vendor
This commit is contained in:
240
vendor/github.com/google/certificate-transparency-go/x509/pem_decrypt.go
generated
vendored
Normal file
240
vendor/github.com/google/certificate-transparency-go/x509/pem_decrypt.go
generated
vendored
Normal file
@ -0,0 +1,240 @@
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package x509
|
||||
|
||||
// RFC 1423 describes the encryption of PEM blocks. The algorithm used to
|
||||
// generate a key from the password was derived by looking at the OpenSSL
|
||||
// implementation.
|
||||
|
||||
import (
|
||||
"crypto/aes"
|
||||
"crypto/cipher"
|
||||
"crypto/des"
|
||||
"crypto/md5"
|
||||
"encoding/hex"
|
||||
"encoding/pem"
|
||||
"errors"
|
||||
"io"
|
||||
"strings"
|
||||
)
|
||||
|
||||
type PEMCipher int
|
||||
|
||||
// Possible values for the EncryptPEMBlock encryption algorithm.
|
||||
const (
|
||||
_ PEMCipher = iota
|
||||
PEMCipherDES
|
||||
PEMCipher3DES
|
||||
PEMCipherAES128
|
||||
PEMCipherAES192
|
||||
PEMCipherAES256
|
||||
)
|
||||
|
||||
// rfc1423Algo holds a method for enciphering a PEM block.
|
||||
type rfc1423Algo struct {
|
||||
cipher PEMCipher
|
||||
name string
|
||||
cipherFunc func(key []byte) (cipher.Block, error)
|
||||
keySize int
|
||||
blockSize int
|
||||
}
|
||||
|
||||
// rfc1423Algos holds a slice of the possible ways to encrypt a PEM
|
||||
// block. The ivSize numbers were taken from the OpenSSL source.
|
||||
var rfc1423Algos = []rfc1423Algo{{
|
||||
cipher: PEMCipherDES,
|
||||
name: "DES-CBC",
|
||||
cipherFunc: des.NewCipher,
|
||||
keySize: 8,
|
||||
blockSize: des.BlockSize,
|
||||
}, {
|
||||
cipher: PEMCipher3DES,
|
||||
name: "DES-EDE3-CBC",
|
||||
cipherFunc: des.NewTripleDESCipher,
|
||||
keySize: 24,
|
||||
blockSize: des.BlockSize,
|
||||
}, {
|
||||
cipher: PEMCipherAES128,
|
||||
name: "AES-128-CBC",
|
||||
cipherFunc: aes.NewCipher,
|
||||
keySize: 16,
|
||||
blockSize: aes.BlockSize,
|
||||
}, {
|
||||
cipher: PEMCipherAES192,
|
||||
name: "AES-192-CBC",
|
||||
cipherFunc: aes.NewCipher,
|
||||
keySize: 24,
|
||||
blockSize: aes.BlockSize,
|
||||
}, {
|
||||
cipher: PEMCipherAES256,
|
||||
name: "AES-256-CBC",
|
||||
cipherFunc: aes.NewCipher,
|
||||
keySize: 32,
|
||||
blockSize: aes.BlockSize,
|
||||
},
|
||||
}
|
||||
|
||||
// deriveKey uses a key derivation function to stretch the password into a key
|
||||
// with the number of bits our cipher requires. This algorithm was derived from
|
||||
// the OpenSSL source.
|
||||
func (c rfc1423Algo) deriveKey(password, salt []byte) []byte {
|
||||
hash := md5.New()
|
||||
out := make([]byte, c.keySize)
|
||||
var digest []byte
|
||||
|
||||
for i := 0; i < len(out); i += len(digest) {
|
||||
hash.Reset()
|
||||
hash.Write(digest)
|
||||
hash.Write(password)
|
||||
hash.Write(salt)
|
||||
digest = hash.Sum(digest[:0])
|
||||
copy(out[i:], digest)
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// IsEncryptedPEMBlock returns if the PEM block is password encrypted.
|
||||
func IsEncryptedPEMBlock(b *pem.Block) bool {
|
||||
_, ok := b.Headers["DEK-Info"]
|
||||
return ok
|
||||
}
|
||||
|
||||
// IncorrectPasswordError is returned when an incorrect password is detected.
|
||||
var IncorrectPasswordError = errors.New("x509: decryption password incorrect")
|
||||
|
||||
// DecryptPEMBlock takes a password encrypted PEM block and the password used to
|
||||
// encrypt it and returns a slice of decrypted DER encoded bytes. It inspects
|
||||
// the DEK-Info header to determine the algorithm used for decryption. If no
|
||||
// DEK-Info header is present, an error is returned. If an incorrect password
|
||||
// is detected an IncorrectPasswordError is returned. Because of deficiencies
|
||||
// in the encrypted-PEM format, it's not always possible to detect an incorrect
|
||||
// password. In these cases no error will be returned but the decrypted DER
|
||||
// bytes will be random noise.
|
||||
func DecryptPEMBlock(b *pem.Block, password []byte) ([]byte, error) {
|
||||
dek, ok := b.Headers["DEK-Info"]
|
||||
if !ok {
|
||||
return nil, errors.New("x509: no DEK-Info header in block")
|
||||
}
|
||||
|
||||
idx := strings.Index(dek, ",")
|
||||
if idx == -1 {
|
||||
return nil, errors.New("x509: malformed DEK-Info header")
|
||||
}
|
||||
|
||||
mode, hexIV := dek[:idx], dek[idx+1:]
|
||||
ciph := cipherByName(mode)
|
||||
if ciph == nil {
|
||||
return nil, errors.New("x509: unknown encryption mode")
|
||||
}
|
||||
iv, err := hex.DecodeString(hexIV)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if len(iv) != ciph.blockSize {
|
||||
return nil, errors.New("x509: incorrect IV size")
|
||||
}
|
||||
|
||||
// Based on the OpenSSL implementation. The salt is the first 8 bytes
|
||||
// of the initialization vector.
|
||||
key := ciph.deriveKey(password, iv[:8])
|
||||
block, err := ciph.cipherFunc(key)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if len(b.Bytes)%block.BlockSize() != 0 {
|
||||
return nil, errors.New("x509: encrypted PEM data is not a multiple of the block size")
|
||||
}
|
||||
|
||||
data := make([]byte, len(b.Bytes))
|
||||
dec := cipher.NewCBCDecrypter(block, iv)
|
||||
dec.CryptBlocks(data, b.Bytes)
|
||||
|
||||
// Blocks are padded using a scheme where the last n bytes of padding are all
|
||||
// equal to n. It can pad from 1 to blocksize bytes inclusive. See RFC 1423.
|
||||
// For example:
|
||||
// [x y z 2 2]
|
||||
// [x y 7 7 7 7 7 7 7]
|
||||
// If we detect a bad padding, we assume it is an invalid password.
|
||||
dlen := len(data)
|
||||
if dlen == 0 || dlen%ciph.blockSize != 0 {
|
||||
return nil, errors.New("x509: invalid padding")
|
||||
}
|
||||
last := int(data[dlen-1])
|
||||
if dlen < last {
|
||||
return nil, IncorrectPasswordError
|
||||
}
|
||||
if last == 0 || last > ciph.blockSize {
|
||||
return nil, IncorrectPasswordError
|
||||
}
|
||||
for _, val := range data[dlen-last:] {
|
||||
if int(val) != last {
|
||||
return nil, IncorrectPasswordError
|
||||
}
|
||||
}
|
||||
return data[:dlen-last], nil
|
||||
}
|
||||
|
||||
// EncryptPEMBlock returns a PEM block of the specified type holding the
|
||||
// given DER-encoded data encrypted with the specified algorithm and
|
||||
// password.
|
||||
func EncryptPEMBlock(rand io.Reader, blockType string, data, password []byte, alg PEMCipher) (*pem.Block, error) {
|
||||
ciph := cipherByKey(alg)
|
||||
if ciph == nil {
|
||||
return nil, errors.New("x509: unknown encryption mode")
|
||||
}
|
||||
iv := make([]byte, ciph.blockSize)
|
||||
if _, err := io.ReadFull(rand, iv); err != nil {
|
||||
return nil, errors.New("x509: cannot generate IV: " + err.Error())
|
||||
}
|
||||
// The salt is the first 8 bytes of the initialization vector,
|
||||
// matching the key derivation in DecryptPEMBlock.
|
||||
key := ciph.deriveKey(password, iv[:8])
|
||||
block, err := ciph.cipherFunc(key)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
enc := cipher.NewCBCEncrypter(block, iv)
|
||||
pad := ciph.blockSize - len(data)%ciph.blockSize
|
||||
encrypted := make([]byte, len(data), len(data)+pad)
|
||||
// We could save this copy by encrypting all the whole blocks in
|
||||
// the data separately, but it doesn't seem worth the additional
|
||||
// code.
|
||||
copy(encrypted, data)
|
||||
// See RFC 1423, section 1.1
|
||||
for i := 0; i < pad; i++ {
|
||||
encrypted = append(encrypted, byte(pad))
|
||||
}
|
||||
enc.CryptBlocks(encrypted, encrypted)
|
||||
|
||||
return &pem.Block{
|
||||
Type: blockType,
|
||||
Headers: map[string]string{
|
||||
"Proc-Type": "4,ENCRYPTED",
|
||||
"DEK-Info": ciph.name + "," + hex.EncodeToString(iv),
|
||||
},
|
||||
Bytes: encrypted,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func cipherByName(name string) *rfc1423Algo {
|
||||
for i := range rfc1423Algos {
|
||||
alg := &rfc1423Algos[i]
|
||||
if alg.name == name {
|
||||
return alg
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func cipherByKey(key PEMCipher) *rfc1423Algo {
|
||||
for i := range rfc1423Algos {
|
||||
alg := &rfc1423Algos[i]
|
||||
if alg.cipher == key {
|
||||
return alg
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
Reference in New Issue
Block a user