1091 lines
32 KiB
Go
1091 lines
32 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package x509
|
||
|
||
import (
|
||
"bytes"
|
||
"errors"
|
||
"fmt"
|
||
"net"
|
||
"net/url"
|
||
"reflect"
|
||
"runtime"
|
||
"strconv"
|
||
"strings"
|
||
"time"
|
||
"unicode/utf8"
|
||
|
||
"github.com/google/certificate-transparency-go/asn1"
|
||
)
|
||
|
||
type InvalidReason int
|
||
|
||
const (
|
||
// NotAuthorizedToSign results when a certificate is signed by another
|
||
// which isn't marked as a CA certificate.
|
||
NotAuthorizedToSign InvalidReason = iota
|
||
// Expired results when a certificate has expired, based on the time
|
||
// given in the VerifyOptions.
|
||
Expired
|
||
// CANotAuthorizedForThisName results when an intermediate or root
|
||
// certificate has a name constraint which doesn't permit a DNS or
|
||
// other name (including IP address) in the leaf certificate.
|
||
CANotAuthorizedForThisName
|
||
// TooManyIntermediates results when a path length constraint is
|
||
// violated.
|
||
TooManyIntermediates
|
||
// IncompatibleUsage results when the certificate's key usage indicates
|
||
// that it may only be used for a different purpose.
|
||
IncompatibleUsage
|
||
// NameMismatch results when the subject name of a parent certificate
|
||
// does not match the issuer name in the child.
|
||
NameMismatch
|
||
// NameConstraintsWithoutSANs results when a leaf certificate doesn't
|
||
// contain a Subject Alternative Name extension, but a CA certificate
|
||
// contains name constraints.
|
||
NameConstraintsWithoutSANs
|
||
// UnconstrainedName results when a CA certificate contains permitted
|
||
// name constraints, but leaf certificate contains a name of an
|
||
// unsupported or unconstrained type.
|
||
UnconstrainedName
|
||
// TooManyConstraints results when the number of comparision operations
|
||
// needed to check a certificate exceeds the limit set by
|
||
// VerifyOptions.MaxConstraintComparisions. This limit exists to
|
||
// prevent pathological certificates can consuming excessive amounts of
|
||
// CPU time to verify.
|
||
TooManyConstraints
|
||
// CANotAuthorizedForExtKeyUsage results when an intermediate or root
|
||
// certificate does not permit an extended key usage that is claimed by
|
||
// the leaf certificate.
|
||
CANotAuthorizedForExtKeyUsage
|
||
)
|
||
|
||
// CertificateInvalidError results when an odd error occurs. Users of this
|
||
// library probably want to handle all these errors uniformly.
|
||
type CertificateInvalidError struct {
|
||
Cert *Certificate
|
||
Reason InvalidReason
|
||
Detail string
|
||
}
|
||
|
||
func (e CertificateInvalidError) Error() string {
|
||
switch e.Reason {
|
||
case NotAuthorizedToSign:
|
||
return "x509: certificate is not authorized to sign other certificates"
|
||
case Expired:
|
||
return "x509: certificate has expired or is not yet valid"
|
||
case CANotAuthorizedForThisName:
|
||
return "x509: a root or intermediate certificate is not authorized to sign for this name: " + e.Detail
|
||
case CANotAuthorizedForExtKeyUsage:
|
||
return "x509: a root or intermediate certificate is not authorized for an extended key usage: " + e.Detail
|
||
case TooManyIntermediates:
|
||
return "x509: too many intermediates for path length constraint"
|
||
case IncompatibleUsage:
|
||
return "x509: certificate specifies an incompatible key usage: " + e.Detail
|
||
case NameMismatch:
|
||
return "x509: issuer name does not match subject from issuing certificate"
|
||
case NameConstraintsWithoutSANs:
|
||
return "x509: issuer has name constraints but leaf doesn't have a SAN extension"
|
||
case UnconstrainedName:
|
||
return "x509: issuer has name constraints but leaf contains unknown or unconstrained name: " + e.Detail
|
||
}
|
||
return "x509: unknown error"
|
||
}
|
||
|
||
// HostnameError results when the set of authorized names doesn't match the
|
||
// requested name.
|
||
type HostnameError struct {
|
||
Certificate *Certificate
|
||
Host string
|
||
}
|
||
|
||
func (h HostnameError) Error() string {
|
||
c := h.Certificate
|
||
|
||
var valid string
|
||
if ip := net.ParseIP(h.Host); ip != nil {
|
||
// Trying to validate an IP
|
||
if len(c.IPAddresses) == 0 {
|
||
return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs"
|
||
}
|
||
for _, san := range c.IPAddresses {
|
||
if len(valid) > 0 {
|
||
valid += ", "
|
||
}
|
||
valid += san.String()
|
||
}
|
||
} else {
|
||
if c.hasSANExtension() {
|
||
valid = strings.Join(c.DNSNames, ", ")
|
||
} else {
|
||
valid = c.Subject.CommonName
|
||
}
|
||
}
|
||
|
||
if len(valid) == 0 {
|
||
return "x509: certificate is not valid for any names, but wanted to match " + h.Host
|
||
}
|
||
return "x509: certificate is valid for " + valid + ", not " + h.Host
|
||
}
|
||
|
||
// UnknownAuthorityError results when the certificate issuer is unknown
|
||
type UnknownAuthorityError struct {
|
||
Cert *Certificate
|
||
// hintErr contains an error that may be helpful in determining why an
|
||
// authority wasn't found.
|
||
hintErr error
|
||
// hintCert contains a possible authority certificate that was rejected
|
||
// because of the error in hintErr.
|
||
hintCert *Certificate
|
||
}
|
||
|
||
func (e UnknownAuthorityError) Error() string {
|
||
s := "x509: certificate signed by unknown authority"
|
||
if e.hintErr != nil {
|
||
certName := e.hintCert.Subject.CommonName
|
||
if len(certName) == 0 {
|
||
if len(e.hintCert.Subject.Organization) > 0 {
|
||
certName = e.hintCert.Subject.Organization[0]
|
||
} else {
|
||
certName = "serial:" + e.hintCert.SerialNumber.String()
|
||
}
|
||
}
|
||
s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName)
|
||
}
|
||
return s
|
||
}
|
||
|
||
// SystemRootsError results when we fail to load the system root certificates.
|
||
type SystemRootsError struct {
|
||
Err error
|
||
}
|
||
|
||
func (se SystemRootsError) Error() string {
|
||
msg := "x509: failed to load system roots and no roots provided"
|
||
if se.Err != nil {
|
||
return msg + "; " + se.Err.Error()
|
||
}
|
||
return msg
|
||
}
|
||
|
||
// errNotParsed is returned when a certificate without ASN.1 contents is
|
||
// verified. Platform-specific verification needs the ASN.1 contents.
|
||
var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate")
|
||
|
||
// VerifyOptions contains parameters for Certificate.Verify. It's a structure
|
||
// because other PKIX verification APIs have ended up needing many options.
|
||
type VerifyOptions struct {
|
||
DNSName string
|
||
Intermediates *CertPool
|
||
Roots *CertPool // if nil, the system roots are used
|
||
CurrentTime time.Time // if zero, the current time is used
|
||
// Options to disable various verification checks.
|
||
DisableTimeChecks bool
|
||
DisableCriticalExtensionChecks bool
|
||
DisableNameChecks bool
|
||
DisableEKUChecks bool
|
||
DisablePathLenChecks bool
|
||
DisableNameConstraintChecks bool
|
||
// KeyUsage specifies which Extended Key Usage values are acceptable. A leaf
|
||
// certificate is accepted if it contains any of the listed values. An empty
|
||
// list means ExtKeyUsageServerAuth. To accept any key usage, include
|
||
// ExtKeyUsageAny.
|
||
//
|
||
// Certificate chains are required to nest extended key usage values,
|
||
// irrespective of this value. This matches the Windows CryptoAPI behavior,
|
||
// but not the spec.
|
||
KeyUsages []ExtKeyUsage
|
||
// MaxConstraintComparisions is the maximum number of comparisons to
|
||
// perform when checking a given certificate's name constraints. If
|
||
// zero, a sensible default is used. This limit prevents pathological
|
||
// certificates from consuming excessive amounts of CPU time when
|
||
// validating.
|
||
MaxConstraintComparisions int
|
||
}
|
||
|
||
const (
|
||
leafCertificate = iota
|
||
intermediateCertificate
|
||
rootCertificate
|
||
)
|
||
|
||
// rfc2821Mailbox represents a “mailbox” (which is an email address to most
|
||
// people) by breaking it into the “local” (i.e. before the '@') and “domain”
|
||
// parts.
|
||
type rfc2821Mailbox struct {
|
||
local, domain string
|
||
}
|
||
|
||
// parseRFC2821Mailbox parses an email address into local and domain parts,
|
||
// based on the ABNF for a “Mailbox” from RFC 2821. According to
|
||
// https://tools.ietf.org/html/rfc5280#section-4.2.1.6 that's correct for an
|
||
// rfc822Name from a certificate: “The format of an rfc822Name is a "Mailbox"
|
||
// as defined in https://tools.ietf.org/html/rfc2821#section-4.1.2”.
|
||
func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) {
|
||
if len(in) == 0 {
|
||
return mailbox, false
|
||
}
|
||
|
||
localPartBytes := make([]byte, 0, len(in)/2)
|
||
|
||
if in[0] == '"' {
|
||
// Quoted-string = DQUOTE *qcontent DQUOTE
|
||
// non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127
|
||
// qcontent = qtext / quoted-pair
|
||
// qtext = non-whitespace-control /
|
||
// %d33 / %d35-91 / %d93-126
|
||
// quoted-pair = ("\" text) / obs-qp
|
||
// text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text
|
||
//
|
||
// (Names beginning with “obs-” are the obsolete syntax from
|
||
// https://tools.ietf.org/html/rfc2822#section-4. Since it has
|
||
// been 16 years, we no longer accept that.)
|
||
in = in[1:]
|
||
QuotedString:
|
||
for {
|
||
if len(in) == 0 {
|
||
return mailbox, false
|
||
}
|
||
c := in[0]
|
||
in = in[1:]
|
||
|
||
switch {
|
||
case c == '"':
|
||
break QuotedString
|
||
|
||
case c == '\\':
|
||
// quoted-pair
|
||
if len(in) == 0 {
|
||
return mailbox, false
|
||
}
|
||
if in[0] == 11 ||
|
||
in[0] == 12 ||
|
||
(1 <= in[0] && in[0] <= 9) ||
|
||
(14 <= in[0] && in[0] <= 127) {
|
||
localPartBytes = append(localPartBytes, in[0])
|
||
in = in[1:]
|
||
} else {
|
||
return mailbox, false
|
||
}
|
||
|
||
case c == 11 ||
|
||
c == 12 ||
|
||
// Space (char 32) is not allowed based on the
|
||
// BNF, but RFC 3696 gives an example that
|
||
// assumes that it is. Several “verified”
|
||
// errata continue to argue about this point.
|
||
// We choose to accept it.
|
||
c == 32 ||
|
||
c == 33 ||
|
||
c == 127 ||
|
||
(1 <= c && c <= 8) ||
|
||
(14 <= c && c <= 31) ||
|
||
(35 <= c && c <= 91) ||
|
||
(93 <= c && c <= 126):
|
||
// qtext
|
||
localPartBytes = append(localPartBytes, c)
|
||
|
||
default:
|
||
return mailbox, false
|
||
}
|
||
}
|
||
} else {
|
||
// Atom ("." Atom)*
|
||
NextChar:
|
||
for len(in) > 0 {
|
||
// atext from https://tools.ietf.org/html/rfc2822#section-3.2.4
|
||
c := in[0]
|
||
|
||
switch {
|
||
case c == '\\':
|
||
// Examples given in RFC 3696 suggest that
|
||
// escaped characters can appear outside of a
|
||
// quoted string. Several “verified” errata
|
||
// continue to argue the point. We choose to
|
||
// accept it.
|
||
in = in[1:]
|
||
if len(in) == 0 {
|
||
return mailbox, false
|
||
}
|
||
fallthrough
|
||
|
||
case ('0' <= c && c <= '9') ||
|
||
('a' <= c && c <= 'z') ||
|
||
('A' <= c && c <= 'Z') ||
|
||
c == '!' || c == '#' || c == '$' || c == '%' ||
|
||
c == '&' || c == '\'' || c == '*' || c == '+' ||
|
||
c == '-' || c == '/' || c == '=' || c == '?' ||
|
||
c == '^' || c == '_' || c == '`' || c == '{' ||
|
||
c == '|' || c == '}' || c == '~' || c == '.':
|
||
localPartBytes = append(localPartBytes, in[0])
|
||
in = in[1:]
|
||
|
||
default:
|
||
break NextChar
|
||
}
|
||
}
|
||
|
||
if len(localPartBytes) == 0 {
|
||
return mailbox, false
|
||
}
|
||
|
||
// https://tools.ietf.org/html/rfc3696#section-3
|
||
// “period (".") may also appear, but may not be used to start
|
||
// or end the local part, nor may two or more consecutive
|
||
// periods appear.”
|
||
twoDots := []byte{'.', '.'}
|
||
if localPartBytes[0] == '.' ||
|
||
localPartBytes[len(localPartBytes)-1] == '.' ||
|
||
bytes.Contains(localPartBytes, twoDots) {
|
||
return mailbox, false
|
||
}
|
||
}
|
||
|
||
if len(in) == 0 || in[0] != '@' {
|
||
return mailbox, false
|
||
}
|
||
in = in[1:]
|
||
|
||
// The RFC species a format for domains, but that's known to be
|
||
// violated in practice so we accept that anything after an '@' is the
|
||
// domain part.
|
||
if _, ok := domainToReverseLabels(in); !ok {
|
||
return mailbox, false
|
||
}
|
||
|
||
mailbox.local = string(localPartBytes)
|
||
mailbox.domain = in
|
||
return mailbox, true
|
||
}
|
||
|
||
// domainToReverseLabels converts a textual domain name like foo.example.com to
|
||
// the list of labels in reverse order, e.g. ["com", "example", "foo"].
|
||
func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) {
|
||
for len(domain) > 0 {
|
||
if i := strings.LastIndexByte(domain, '.'); i == -1 {
|
||
reverseLabels = append(reverseLabels, domain)
|
||
domain = ""
|
||
} else {
|
||
reverseLabels = append(reverseLabels, domain[i+1:len(domain)])
|
||
domain = domain[:i]
|
||
}
|
||
}
|
||
|
||
if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 {
|
||
// An empty label at the end indicates an absolute value.
|
||
return nil, false
|
||
}
|
||
|
||
for _, label := range reverseLabels {
|
||
if len(label) == 0 {
|
||
// Empty labels are otherwise invalid.
|
||
return nil, false
|
||
}
|
||
|
||
for _, c := range label {
|
||
if c < 33 || c > 126 {
|
||
// Invalid character.
|
||
return nil, false
|
||
}
|
||
}
|
||
}
|
||
|
||
return reverseLabels, true
|
||
}
|
||
|
||
func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) {
|
||
// If the constraint contains an @, then it specifies an exact mailbox
|
||
// name.
|
||
if strings.Contains(constraint, "@") {
|
||
constraintMailbox, ok := parseRFC2821Mailbox(constraint)
|
||
if !ok {
|
||
return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint)
|
||
}
|
||
return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil
|
||
}
|
||
|
||
// Otherwise the constraint is like a DNS constraint of the domain part
|
||
// of the mailbox.
|
||
return matchDomainConstraint(mailbox.domain, constraint)
|
||
}
|
||
|
||
func matchURIConstraint(uri *url.URL, constraint string) (bool, error) {
|
||
// https://tools.ietf.org/html/rfc5280#section-4.2.1.10
|
||
// “a uniformResourceIdentifier that does not include an authority
|
||
// component with a host name specified as a fully qualified domain
|
||
// name (e.g., if the URI either does not include an authority
|
||
// component or includes an authority component in which the host name
|
||
// is specified as an IP address), then the application MUST reject the
|
||
// certificate.”
|
||
|
||
host := uri.Host
|
||
if len(host) == 0 {
|
||
return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String())
|
||
}
|
||
|
||
if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") {
|
||
var err error
|
||
host, _, err = net.SplitHostPort(uri.Host)
|
||
if err != nil {
|
||
return false, err
|
||
}
|
||
}
|
||
|
||
if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") ||
|
||
net.ParseIP(host) != nil {
|
||
return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String())
|
||
}
|
||
|
||
return matchDomainConstraint(host, constraint)
|
||
}
|
||
|
||
func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) {
|
||
if len(ip) != len(constraint.IP) {
|
||
return false, nil
|
||
}
|
||
|
||
for i := range ip {
|
||
if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask {
|
||
return false, nil
|
||
}
|
||
}
|
||
|
||
return true, nil
|
||
}
|
||
|
||
func matchDomainConstraint(domain, constraint string) (bool, error) {
|
||
// The meaning of zero length constraints is not specified, but this
|
||
// code follows NSS and accepts them as matching everything.
|
||
if len(constraint) == 0 {
|
||
return true, nil
|
||
}
|
||
|
||
domainLabels, ok := domainToReverseLabels(domain)
|
||
if !ok {
|
||
return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain)
|
||
}
|
||
|
||
// RFC 5280 says that a leading period in a domain name means that at
|
||
// least one label must be prepended, but only for URI and email
|
||
// constraints, not DNS constraints. The code also supports that
|
||
// behaviour for DNS constraints.
|
||
|
||
mustHaveSubdomains := false
|
||
if constraint[0] == '.' {
|
||
mustHaveSubdomains = true
|
||
constraint = constraint[1:]
|
||
}
|
||
|
||
constraintLabels, ok := domainToReverseLabels(constraint)
|
||
if !ok {
|
||
return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint)
|
||
}
|
||
|
||
if len(domainLabels) < len(constraintLabels) ||
|
||
(mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) {
|
||
return false, nil
|
||
}
|
||
|
||
for i, constraintLabel := range constraintLabels {
|
||
if !strings.EqualFold(constraintLabel, domainLabels[i]) {
|
||
return false, nil
|
||
}
|
||
}
|
||
|
||
return true, nil
|
||
}
|
||
|
||
// checkNameConstraints checks that c permits a child certificate to claim the
|
||
// given name, of type nameType. The argument parsedName contains the parsed
|
||
// form of name, suitable for passing to the match function. The total number
|
||
// of comparisons is tracked in the given count and should not exceed the given
|
||
// limit.
|
||
func (c *Certificate) checkNameConstraints(count *int,
|
||
maxConstraintComparisons int,
|
||
nameType string,
|
||
name string,
|
||
parsedName interface{},
|
||
match func(parsedName, constraint interface{}) (match bool, err error),
|
||
permitted, excluded interface{}) error {
|
||
|
||
excludedValue := reflect.ValueOf(excluded)
|
||
|
||
*count += excludedValue.Len()
|
||
if *count > maxConstraintComparisons {
|
||
return CertificateInvalidError{c, TooManyConstraints, ""}
|
||
}
|
||
|
||
for i := 0; i < excludedValue.Len(); i++ {
|
||
constraint := excludedValue.Index(i).Interface()
|
||
match, err := match(parsedName, constraint)
|
||
if err != nil {
|
||
return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
|
||
}
|
||
|
||
if match {
|
||
return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)}
|
||
}
|
||
}
|
||
|
||
permittedValue := reflect.ValueOf(permitted)
|
||
|
||
*count += permittedValue.Len()
|
||
if *count > maxConstraintComparisons {
|
||
return CertificateInvalidError{c, TooManyConstraints, ""}
|
||
}
|
||
|
||
ok := true
|
||
for i := 0; i < permittedValue.Len(); i++ {
|
||
constraint := permittedValue.Index(i).Interface()
|
||
|
||
var err error
|
||
if ok, err = match(parsedName, constraint); err != nil {
|
||
return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
|
||
}
|
||
|
||
if ok {
|
||
break
|
||
}
|
||
}
|
||
|
||
if !ok {
|
||
return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)}
|
||
}
|
||
|
||
return nil
|
||
}
|
||
|
||
const (
|
||
checkingAgainstIssuerCert = iota
|
||
checkingAgainstLeafCert
|
||
)
|
||
|
||
// ekuPermittedBy returns true iff the given extended key usage is permitted by
|
||
// the given EKU from a certificate. Normally, this would be a simple
|
||
// comparison plus a special case for the “any” EKU. But, in order to support
|
||
// existing certificates, some exceptions are made.
|
||
func ekuPermittedBy(eku, certEKU ExtKeyUsage, context int) bool {
|
||
if certEKU == ExtKeyUsageAny || eku == certEKU {
|
||
return true
|
||
}
|
||
|
||
// Some exceptions are made to support existing certificates. Firstly,
|
||
// the ServerAuth and SGC EKUs are treated as a group.
|
||
mapServerAuthEKUs := func(eku ExtKeyUsage) ExtKeyUsage {
|
||
if eku == ExtKeyUsageNetscapeServerGatedCrypto || eku == ExtKeyUsageMicrosoftServerGatedCrypto {
|
||
return ExtKeyUsageServerAuth
|
||
}
|
||
return eku
|
||
}
|
||
|
||
eku = mapServerAuthEKUs(eku)
|
||
certEKU = mapServerAuthEKUs(certEKU)
|
||
|
||
if eku == certEKU {
|
||
return true
|
||
}
|
||
|
||
// If checking a requested EKU against the list in a leaf certificate there
|
||
// are fewer exceptions.
|
||
if context == checkingAgainstLeafCert {
|
||
return false
|
||
}
|
||
|
||
// ServerAuth in a CA permits ClientAuth in the leaf.
|
||
return (eku == ExtKeyUsageClientAuth && certEKU == ExtKeyUsageServerAuth) ||
|
||
// Any CA may issue an OCSP responder certificate.
|
||
eku == ExtKeyUsageOCSPSigning ||
|
||
// Code-signing CAs can use Microsoft's commercial and
|
||
// kernel-mode EKUs.
|
||
(eku == ExtKeyUsageMicrosoftCommercialCodeSigning || eku == ExtKeyUsageMicrosoftKernelCodeSigning) && certEKU == ExtKeyUsageCodeSigning
|
||
}
|
||
|
||
// isValid performs validity checks on c given that it is a candidate to append
|
||
// to the chain in currentChain.
|
||
func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error {
|
||
if !opts.DisableCriticalExtensionChecks && len(c.UnhandledCriticalExtensions) > 0 {
|
||
return UnhandledCriticalExtension{ID: c.UnhandledCriticalExtensions[0]}
|
||
}
|
||
|
||
if !opts.DisableNameChecks && len(currentChain) > 0 {
|
||
child := currentChain[len(currentChain)-1]
|
||
if !bytes.Equal(child.RawIssuer, c.RawSubject) {
|
||
return CertificateInvalidError{c, NameMismatch, ""}
|
||
}
|
||
}
|
||
|
||
if !opts.DisableTimeChecks {
|
||
now := opts.CurrentTime
|
||
if now.IsZero() {
|
||
now = time.Now()
|
||
}
|
||
if now.Before(c.NotBefore) || now.After(c.NotAfter) {
|
||
return CertificateInvalidError{c, Expired, ""}
|
||
}
|
||
}
|
||
|
||
maxConstraintComparisons := opts.MaxConstraintComparisions
|
||
if maxConstraintComparisons == 0 {
|
||
maxConstraintComparisons = 250000
|
||
}
|
||
comparisonCount := 0
|
||
|
||
var leaf *Certificate
|
||
if certType == intermediateCertificate || certType == rootCertificate {
|
||
if len(currentChain) == 0 {
|
||
return errors.New("x509: internal error: empty chain when appending CA cert")
|
||
}
|
||
leaf = currentChain[0]
|
||
}
|
||
|
||
if !opts.DisableNameConstraintChecks && (certType == intermediateCertificate || certType == rootCertificate) && c.hasNameConstraints() {
|
||
sanExtension, ok := leaf.getSANExtension()
|
||
if !ok {
|
||
// This is the deprecated, legacy case of depending on
|
||
// the CN as a hostname. Chains modern enough to be
|
||
// using name constraints should not be depending on
|
||
// CNs.
|
||
return CertificateInvalidError{c, NameConstraintsWithoutSANs, ""}
|
||
}
|
||
|
||
err := forEachSAN(sanExtension, func(tag int, data []byte) error {
|
||
switch tag {
|
||
case nameTypeEmail:
|
||
name := string(data)
|
||
mailbox, ok := parseRFC2821Mailbox(name)
|
||
if !ok {
|
||
return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox)
|
||
}
|
||
|
||
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox,
|
||
func(parsedName, constraint interface{}) (bool, error) {
|
||
return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string))
|
||
}, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil {
|
||
return err
|
||
}
|
||
|
||
case nameTypeDNS:
|
||
name := string(data)
|
||
if _, ok := domainToReverseLabels(name); !ok {
|
||
return fmt.Errorf("x509: cannot parse dnsName %q", name)
|
||
}
|
||
|
||
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name,
|
||
func(parsedName, constraint interface{}) (bool, error) {
|
||
return matchDomainConstraint(parsedName.(string), constraint.(string))
|
||
}, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil {
|
||
return err
|
||
}
|
||
|
||
case nameTypeURI:
|
||
name := string(data)
|
||
uri, err := url.Parse(name)
|
||
if err != nil {
|
||
return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name)
|
||
}
|
||
|
||
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri,
|
||
func(parsedName, constraint interface{}) (bool, error) {
|
||
return matchURIConstraint(parsedName.(*url.URL), constraint.(string))
|
||
}, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil {
|
||
return err
|
||
}
|
||
|
||
case nameTypeIP:
|
||
ip := net.IP(data)
|
||
if l := len(ip); l != net.IPv4len && l != net.IPv6len {
|
||
return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data)
|
||
}
|
||
|
||
if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip,
|
||
func(parsedName, constraint interface{}) (bool, error) {
|
||
return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet))
|
||
}, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil {
|
||
return err
|
||
}
|
||
|
||
default:
|
||
// Unknown SAN types are ignored.
|
||
}
|
||
|
||
return nil
|
||
})
|
||
|
||
if err != nil {
|
||
return err
|
||
}
|
||
}
|
||
|
||
checkEKUs := !opts.DisableEKUChecks && certType == intermediateCertificate
|
||
|
||
// If no extended key usages are specified, then all are acceptable.
|
||
if checkEKUs && (len(c.ExtKeyUsage) == 0 && len(c.UnknownExtKeyUsage) == 0) {
|
||
checkEKUs = false
|
||
}
|
||
|
||
// If the “any” key usage is permitted, then no more checks are needed.
|
||
if checkEKUs {
|
||
for _, caEKU := range c.ExtKeyUsage {
|
||
comparisonCount++
|
||
if caEKU == ExtKeyUsageAny {
|
||
checkEKUs = false
|
||
break
|
||
}
|
||
}
|
||
}
|
||
|
||
if checkEKUs {
|
||
NextEKU:
|
||
for _, eku := range leaf.ExtKeyUsage {
|
||
if comparisonCount > maxConstraintComparisons {
|
||
return CertificateInvalidError{c, TooManyConstraints, ""}
|
||
}
|
||
|
||
for _, caEKU := range c.ExtKeyUsage {
|
||
comparisonCount++
|
||
if ekuPermittedBy(eku, caEKU, checkingAgainstIssuerCert) {
|
||
continue NextEKU
|
||
}
|
||
}
|
||
|
||
oid, _ := oidFromExtKeyUsage(eku)
|
||
return CertificateInvalidError{c, CANotAuthorizedForExtKeyUsage, fmt.Sprintf("EKU not permitted: %#v", oid)}
|
||
}
|
||
|
||
NextUnknownEKU:
|
||
for _, eku := range leaf.UnknownExtKeyUsage {
|
||
if comparisonCount > maxConstraintComparisons {
|
||
return CertificateInvalidError{c, TooManyConstraints, ""}
|
||
}
|
||
|
||
for _, caEKU := range c.UnknownExtKeyUsage {
|
||
comparisonCount++
|
||
if caEKU.Equal(eku) {
|
||
continue NextUnknownEKU
|
||
}
|
||
}
|
||
|
||
return CertificateInvalidError{c, CANotAuthorizedForExtKeyUsage, fmt.Sprintf("EKU not permitted: %#v", eku)}
|
||
}
|
||
}
|
||
|
||
// KeyUsage status flags are ignored. From Engineering Security, Peter
|
||
// Gutmann: A European government CA marked its signing certificates as
|
||
// being valid for encryption only, but no-one noticed. Another
|
||
// European CA marked its signature keys as not being valid for
|
||
// signatures. A different CA marked its own trusted root certificate
|
||
// as being invalid for certificate signing. Another national CA
|
||
// distributed a certificate to be used to encrypt data for the
|
||
// country’s tax authority that was marked as only being usable for
|
||
// digital signatures but not for encryption. Yet another CA reversed
|
||
// the order of the bit flags in the keyUsage due to confusion over
|
||
// encoding endianness, essentially setting a random keyUsage in
|
||
// certificates that it issued. Another CA created a self-invalidating
|
||
// certificate by adding a certificate policy statement stipulating
|
||
// that the certificate had to be used strictly as specified in the
|
||
// keyUsage, and a keyUsage containing a flag indicating that the RSA
|
||
// encryption key could only be used for Diffie-Hellman key agreement.
|
||
|
||
if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
|
||
return CertificateInvalidError{c, NotAuthorizedToSign, ""}
|
||
}
|
||
|
||
if !opts.DisablePathLenChecks && c.BasicConstraintsValid && c.MaxPathLen >= 0 {
|
||
numIntermediates := len(currentChain) - 1
|
||
if numIntermediates > c.MaxPathLen {
|
||
return CertificateInvalidError{c, TooManyIntermediates, ""}
|
||
}
|
||
}
|
||
|
||
return nil
|
||
}
|
||
|
||
// formatOID formats an ASN.1 OBJECT IDENTIFER in the common, dotted style.
|
||
func formatOID(oid asn1.ObjectIdentifier) string {
|
||
ret := ""
|
||
for i, v := range oid {
|
||
if i > 0 {
|
||
ret += "."
|
||
}
|
||
ret += strconv.Itoa(v)
|
||
}
|
||
return ret
|
||
}
|
||
|
||
// Verify attempts to verify c by building one or more chains from c to a
|
||
// certificate in opts.Roots, using certificates in opts.Intermediates if
|
||
// needed. If successful, it returns one or more chains where the first
|
||
// element of the chain is c and the last element is from opts.Roots.
|
||
//
|
||
// If opts.Roots is nil and system roots are unavailable the returned error
|
||
// will be of type SystemRootsError.
|
||
//
|
||
// Name constraints in the intermediates will be applied to all names claimed
|
||
// in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim
|
||
// example.com if an intermediate doesn't permit it, even if example.com is not
|
||
// the name being validated. Note that DirectoryName constraints are not
|
||
// supported.
|
||
//
|
||
// Extended Key Usage values are enforced down a chain, so an intermediate or
|
||
// root that enumerates EKUs prevents a leaf from asserting an EKU not in that
|
||
// list.
|
||
//
|
||
// WARNING: this function doesn't do any revocation checking.
|
||
func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
|
||
// Platform-specific verification needs the ASN.1 contents so
|
||
// this makes the behavior consistent across platforms.
|
||
if len(c.Raw) == 0 {
|
||
return nil, errNotParsed
|
||
}
|
||
if opts.Intermediates != nil {
|
||
for _, intermediate := range opts.Intermediates.certs {
|
||
if len(intermediate.Raw) == 0 {
|
||
return nil, errNotParsed
|
||
}
|
||
}
|
||
}
|
||
|
||
// Use Windows's own verification and chain building.
|
||
if opts.Roots == nil && runtime.GOOS == "windows" {
|
||
return c.systemVerify(&opts)
|
||
}
|
||
|
||
if opts.Roots == nil {
|
||
opts.Roots = systemRootsPool()
|
||
if opts.Roots == nil {
|
||
return nil, SystemRootsError{systemRootsErr}
|
||
}
|
||
}
|
||
|
||
err = c.isValid(leafCertificate, nil, &opts)
|
||
if err != nil {
|
||
return
|
||
}
|
||
|
||
if len(opts.DNSName) > 0 {
|
||
err = c.VerifyHostname(opts.DNSName)
|
||
if err != nil {
|
||
return
|
||
}
|
||
}
|
||
|
||
requestedKeyUsages := make([]ExtKeyUsage, len(opts.KeyUsages))
|
||
copy(requestedKeyUsages, opts.KeyUsages)
|
||
if len(requestedKeyUsages) == 0 {
|
||
requestedKeyUsages = append(requestedKeyUsages, ExtKeyUsageServerAuth)
|
||
}
|
||
|
||
// If no key usages are specified, then any are acceptable.
|
||
checkEKU := !opts.DisableEKUChecks && len(c.ExtKeyUsage) > 0
|
||
|
||
for _, eku := range requestedKeyUsages {
|
||
if eku == ExtKeyUsageAny {
|
||
checkEKU = false
|
||
break
|
||
}
|
||
}
|
||
|
||
if checkEKU {
|
||
foundMatch := false
|
||
NextUsage:
|
||
for _, eku := range requestedKeyUsages {
|
||
for _, leafEKU := range c.ExtKeyUsage {
|
||
if ekuPermittedBy(eku, leafEKU, checkingAgainstLeafCert) {
|
||
foundMatch = true
|
||
break NextUsage
|
||
}
|
||
}
|
||
}
|
||
|
||
if !foundMatch {
|
||
msg := "leaf contains the following, recognized EKUs: "
|
||
|
||
for i, leafEKU := range c.ExtKeyUsage {
|
||
oid, ok := oidFromExtKeyUsage(leafEKU)
|
||
if !ok {
|
||
continue
|
||
}
|
||
|
||
if i > 0 {
|
||
msg += ", "
|
||
}
|
||
msg += formatOID(oid)
|
||
}
|
||
|
||
return nil, CertificateInvalidError{c, IncompatibleUsage, msg}
|
||
}
|
||
}
|
||
|
||
var candidateChains [][]*Certificate
|
||
if opts.Roots.contains(c) {
|
||
candidateChains = append(candidateChains, []*Certificate{c})
|
||
} else {
|
||
if candidateChains, err = c.buildChains(make(map[int][][]*Certificate), []*Certificate{c}, &opts); err != nil {
|
||
return nil, err
|
||
}
|
||
}
|
||
|
||
return candidateChains, nil
|
||
}
|
||
|
||
func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
|
||
n := make([]*Certificate, len(chain)+1)
|
||
copy(n, chain)
|
||
n[len(chain)] = cert
|
||
return n
|
||
}
|
||
|
||
func (c *Certificate) buildChains(cache map[int][][]*Certificate, currentChain []*Certificate, opts *VerifyOptions) (chains [][]*Certificate, err error) {
|
||
possibleRoots, failedRoot, rootErr := opts.Roots.findVerifiedParents(c)
|
||
nextRoot:
|
||
for _, rootNum := range possibleRoots {
|
||
root := opts.Roots.certs[rootNum]
|
||
|
||
for _, cert := range currentChain {
|
||
if cert.Equal(root) {
|
||
continue nextRoot
|
||
}
|
||
}
|
||
|
||
err = root.isValid(rootCertificate, currentChain, opts)
|
||
if err != nil {
|
||
continue
|
||
}
|
||
chains = append(chains, appendToFreshChain(currentChain, root))
|
||
}
|
||
|
||
possibleIntermediates, failedIntermediate, intermediateErr := opts.Intermediates.findVerifiedParents(c)
|
||
nextIntermediate:
|
||
for _, intermediateNum := range possibleIntermediates {
|
||
intermediate := opts.Intermediates.certs[intermediateNum]
|
||
for _, cert := range currentChain {
|
||
if cert.Equal(intermediate) {
|
||
continue nextIntermediate
|
||
}
|
||
}
|
||
err = intermediate.isValid(intermediateCertificate, currentChain, opts)
|
||
if err != nil {
|
||
continue
|
||
}
|
||
var childChains [][]*Certificate
|
||
childChains, ok := cache[intermediateNum]
|
||
if !ok {
|
||
childChains, err = intermediate.buildChains(cache, appendToFreshChain(currentChain, intermediate), opts)
|
||
cache[intermediateNum] = childChains
|
||
}
|
||
chains = append(chains, childChains...)
|
||
}
|
||
|
||
if len(chains) > 0 {
|
||
err = nil
|
||
}
|
||
|
||
if len(chains) == 0 && err == nil {
|
||
hintErr := rootErr
|
||
hintCert := failedRoot
|
||
if hintErr == nil {
|
||
hintErr = intermediateErr
|
||
hintCert = failedIntermediate
|
||
}
|
||
err = UnknownAuthorityError{c, hintErr, hintCert}
|
||
}
|
||
|
||
return
|
||
}
|
||
|
||
func matchHostnames(pattern, host string) bool {
|
||
host = strings.TrimSuffix(host, ".")
|
||
pattern = strings.TrimSuffix(pattern, ".")
|
||
|
||
if len(pattern) == 0 || len(host) == 0 {
|
||
return false
|
||
}
|
||
|
||
patternParts := strings.Split(pattern, ".")
|
||
hostParts := strings.Split(host, ".")
|
||
|
||
if len(patternParts) != len(hostParts) {
|
||
return false
|
||
}
|
||
|
||
for i, patternPart := range patternParts {
|
||
if i == 0 && patternPart == "*" {
|
||
continue
|
||
}
|
||
if patternPart != hostParts[i] {
|
||
return false
|
||
}
|
||
}
|
||
|
||
return true
|
||
}
|
||
|
||
// toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
|
||
// an explicitly ASCII function to avoid any sharp corners resulting from
|
||
// performing Unicode operations on DNS labels.
|
||
func toLowerCaseASCII(in string) string {
|
||
// If the string is already lower-case then there's nothing to do.
|
||
isAlreadyLowerCase := true
|
||
for _, c := range in {
|
||
if c == utf8.RuneError {
|
||
// If we get a UTF-8 error then there might be
|
||
// upper-case ASCII bytes in the invalid sequence.
|
||
isAlreadyLowerCase = false
|
||
break
|
||
}
|
||
if 'A' <= c && c <= 'Z' {
|
||
isAlreadyLowerCase = false
|
||
break
|
||
}
|
||
}
|
||
|
||
if isAlreadyLowerCase {
|
||
return in
|
||
}
|
||
|
||
out := []byte(in)
|
||
for i, c := range out {
|
||
if 'A' <= c && c <= 'Z' {
|
||
out[i] += 'a' - 'A'
|
||
}
|
||
}
|
||
return string(out)
|
||
}
|
||
|
||
// VerifyHostname returns nil if c is a valid certificate for the named host.
|
||
// Otherwise it returns an error describing the mismatch.
|
||
func (c *Certificate) VerifyHostname(h string) error {
|
||
// IP addresses may be written in [ ].
|
||
candidateIP := h
|
||
if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
|
||
candidateIP = h[1 : len(h)-1]
|
||
}
|
||
if ip := net.ParseIP(candidateIP); ip != nil {
|
||
// We only match IP addresses against IP SANs.
|
||
// https://tools.ietf.org/html/rfc6125#appendix-B.2
|
||
for _, candidate := range c.IPAddresses {
|
||
if ip.Equal(candidate) {
|
||
return nil
|
||
}
|
||
}
|
||
return HostnameError{c, candidateIP}
|
||
}
|
||
|
||
lowered := toLowerCaseASCII(h)
|
||
|
||
if c.hasSANExtension() {
|
||
for _, match := range c.DNSNames {
|
||
if matchHostnames(toLowerCaseASCII(match), lowered) {
|
||
return nil
|
||
}
|
||
}
|
||
// If Subject Alt Name is given, we ignore the common name.
|
||
} else if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) {
|
||
return nil
|
||
}
|
||
|
||
return HostnameError{c, h}
|
||
}
|