ceph-csi/vendor/github.com/antlr4-go/antlr/v4/jcollect.go

686 lines
17 KiB
Go
Raw Permalink Normal View History

package antlr
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
import (
"container/list"
"runtime/debug"
"sort"
"sync"
)
// Collectable is an interface that a struct should implement if it is to be
// usable as a key in these collections.
type Collectable[T any] interface {
Hash() int
Equals(other Collectable[T]) bool
}
type Comparator[T any] interface {
Hash1(o T) int
Equals2(T, T) bool
}
type CollectionSource int
type CollectionDescriptor struct {
SybolicName string
Description string
}
const (
UnknownCollection CollectionSource = iota
ATNConfigLookupCollection
ATNStateCollection
DFAStateCollection
ATNConfigCollection
PredictionContextCollection
SemanticContextCollection
ClosureBusyCollection
PredictionVisitedCollection
MergeCacheCollection
PredictionContextCacheCollection
AltSetCollection
ReachSetCollection
)
var CollectionDescriptors = map[CollectionSource]CollectionDescriptor{
UnknownCollection: {
SybolicName: "UnknownCollection",
Description: "Unknown collection type. Only used if the target author thought it was an unimportant collection.",
},
ATNConfigCollection: {
SybolicName: "ATNConfigCollection",
Description: "ATNConfig collection. Used to store the ATNConfigs for a particular state in the ATN." +
"For instance, it is used to store the results of the closure() operation in the ATN.",
},
ATNConfigLookupCollection: {
SybolicName: "ATNConfigLookupCollection",
Description: "ATNConfigLookup collection. Used to store the ATNConfigs for a particular state in the ATN." +
"This is used to prevent duplicating equivalent states in an ATNConfigurationSet.",
},
ATNStateCollection: {
SybolicName: "ATNStateCollection",
Description: "ATNState collection. This is used to store the states of the ATN.",
},
DFAStateCollection: {
SybolicName: "DFAStateCollection",
Description: "DFAState collection. This is used to store the states of the DFA.",
},
PredictionContextCollection: {
SybolicName: "PredictionContextCollection",
Description: "PredictionContext collection. This is used to store the prediction contexts of the ATN and cache computes.",
},
SemanticContextCollection: {
SybolicName: "SemanticContextCollection",
Description: "SemanticContext collection. This is used to store the semantic contexts of the ATN.",
},
ClosureBusyCollection: {
SybolicName: "ClosureBusyCollection",
Description: "ClosureBusy collection. This is used to check and prevent infinite recursion right recursive rules." +
"It stores ATNConfigs that are currently being processed in the closure() operation.",
},
PredictionVisitedCollection: {
SybolicName: "PredictionVisitedCollection",
Description: "A map that records whether we have visited a particular context when searching through cached entries.",
},
MergeCacheCollection: {
SybolicName: "MergeCacheCollection",
Description: "A map that records whether we have already merged two particular contexts and can save effort by not repeating it.",
},
PredictionContextCacheCollection: {
SybolicName: "PredictionContextCacheCollection",
Description: "A map that records whether we have already created a particular context and can save effort by not computing it again.",
},
AltSetCollection: {
SybolicName: "AltSetCollection",
Description: "Used to eliminate duplicate alternatives in an ATN config set.",
},
ReachSetCollection: {
SybolicName: "ReachSetCollection",
Description: "Used as merge cache to prevent us needing to compute the merge of two states if we have already done it.",
},
}
// JStore implements a container that allows the use of a struct to calculate the key
// for a collection of values akin to map. This is not meant to be a full-blown HashMap but just
// serve the needs of the ANTLR Go runtime.
//
// For ease of porting the logic of the runtime from the master target (Java), this collection
// operates in a similar way to Java, in that it can use any struct that supplies a Hash() and Equals()
// function as the key. The values are stored in a standard go map which internally is a form of hashmap
// itself, the key for the go map is the hash supplied by the key object. The collection is able to deal with
// hash conflicts by using a simple slice of values associated with the hash code indexed bucket. That isn't
// particularly efficient, but it is simple, and it works. As this is specifically for the ANTLR runtime, and
// we understand the requirements, then this is fine - this is not a general purpose collection.
type JStore[T any, C Comparator[T]] struct {
store map[int][]T
len int
comparator Comparator[T]
stats *JStatRec
}
func NewJStore[T any, C Comparator[T]](comparator Comparator[T], cType CollectionSource, desc string) *JStore[T, C] {
if comparator == nil {
panic("comparator cannot be nil")
}
s := &JStore[T, C]{
store: make(map[int][]T, 1),
comparator: comparator,
}
if collectStats {
s.stats = &JStatRec{
Source: cType,
Description: desc,
}
// Track where we created it from if we are being asked to do so
if runtimeConfig.statsTraceStacks {
s.stats.CreateStack = debug.Stack()
}
Statistics.AddJStatRec(s.stats)
}
return s
}
// Put will store given value in the collection. Note that the key for storage is generated from
// the value itself - this is specifically because that is what ANTLR needs - this would not be useful
// as any kind of general collection.
//
// If the key has a hash conflict, then the value will be added to the slice of values associated with the
// hash, unless the value is already in the slice, in which case the existing value is returned. Value equivalence is
// tested by calling the equals() method on the key.
//
// # If the given value is already present in the store, then the existing value is returned as v and exists is set to true
//
// If the given value is not present in the store, then the value is added to the store and returned as v and exists is set to false.
func (s *JStore[T, C]) Put(value T) (v T, exists bool) {
if collectStats {
s.stats.Puts++
}
kh := s.comparator.Hash1(value)
var hClash bool
for _, v1 := range s.store[kh] {
hClash = true
if s.comparator.Equals2(value, v1) {
if collectStats {
s.stats.PutHits++
s.stats.PutHashConflicts++
}
return v1, true
}
if collectStats {
s.stats.PutMisses++
}
}
if collectStats && hClash {
s.stats.PutHashConflicts++
}
s.store[kh] = append(s.store[kh], value)
if collectStats {
if len(s.store[kh]) > s.stats.MaxSlotSize {
s.stats.MaxSlotSize = len(s.store[kh])
}
}
s.len++
if collectStats {
s.stats.CurSize = s.len
if s.len > s.stats.MaxSize {
s.stats.MaxSize = s.len
}
}
return value, false
}
// Get will return the value associated with the key - the type of the key is the same type as the value
// which would not generally be useful, but this is a specific thing for ANTLR where the key is
// generated using the object we are going to store.
func (s *JStore[T, C]) Get(key T) (T, bool) {
if collectStats {
s.stats.Gets++
}
kh := s.comparator.Hash1(key)
var hClash bool
for _, v := range s.store[kh] {
hClash = true
if s.comparator.Equals2(key, v) {
if collectStats {
s.stats.GetHits++
s.stats.GetHashConflicts++
}
return v, true
}
if collectStats {
s.stats.GetMisses++
}
}
if collectStats {
if hClash {
s.stats.GetHashConflicts++
}
s.stats.GetNoEnt++
}
return key, false
}
// Contains returns true if the given key is present in the store
func (s *JStore[T, C]) Contains(key T) bool {
_, present := s.Get(key)
return present
}
func (s *JStore[T, C]) SortedSlice(less func(i, j T) bool) []T {
vs := make([]T, 0, len(s.store))
for _, v := range s.store {
vs = append(vs, v...)
}
sort.Slice(vs, func(i, j int) bool {
return less(vs[i], vs[j])
})
return vs
}
func (s *JStore[T, C]) Each(f func(T) bool) {
for _, e := range s.store {
for _, v := range e {
f(v)
}
}
}
func (s *JStore[T, C]) Len() int {
return s.len
}
func (s *JStore[T, C]) Values() []T {
vs := make([]T, 0, len(s.store))
for _, e := range s.store {
vs = append(vs, e...)
}
return vs
}
type entry[K, V any] struct {
key K
val V
}
type JMap[K, V any, C Comparator[K]] struct {
store map[int][]*entry[K, V]
len int
comparator Comparator[K]
stats *JStatRec
}
func NewJMap[K, V any, C Comparator[K]](comparator Comparator[K], cType CollectionSource, desc string) *JMap[K, V, C] {
m := &JMap[K, V, C]{
store: make(map[int][]*entry[K, V], 1),
comparator: comparator,
}
if collectStats {
m.stats = &JStatRec{
Source: cType,
Description: desc,
}
// Track where we created it from if we are being asked to do so
if runtimeConfig.statsTraceStacks {
m.stats.CreateStack = debug.Stack()
}
Statistics.AddJStatRec(m.stats)
}
return m
}
func (m *JMap[K, V, C]) Put(key K, val V) (V, bool) {
if collectStats {
m.stats.Puts++
}
kh := m.comparator.Hash1(key)
var hClash bool
for _, e := range m.store[kh] {
hClash = true
if m.comparator.Equals2(e.key, key) {
if collectStats {
m.stats.PutHits++
m.stats.PutHashConflicts++
}
return e.val, true
}
if collectStats {
m.stats.PutMisses++
}
}
if collectStats {
if hClash {
m.stats.PutHashConflicts++
}
}
m.store[kh] = append(m.store[kh], &entry[K, V]{key, val})
if collectStats {
if len(m.store[kh]) > m.stats.MaxSlotSize {
m.stats.MaxSlotSize = len(m.store[kh])
}
}
m.len++
if collectStats {
m.stats.CurSize = m.len
if m.len > m.stats.MaxSize {
m.stats.MaxSize = m.len
}
}
return val, false
}
func (m *JMap[K, V, C]) Values() []V {
vs := make([]V, 0, len(m.store))
for _, e := range m.store {
for _, v := range e {
vs = append(vs, v.val)
}
}
return vs
}
func (m *JMap[K, V, C]) Get(key K) (V, bool) {
if collectStats {
m.stats.Gets++
}
var none V
kh := m.comparator.Hash1(key)
var hClash bool
for _, e := range m.store[kh] {
hClash = true
if m.comparator.Equals2(e.key, key) {
if collectStats {
m.stats.GetHits++
m.stats.GetHashConflicts++
}
return e.val, true
}
if collectStats {
m.stats.GetMisses++
}
}
if collectStats {
if hClash {
m.stats.GetHashConflicts++
}
m.stats.GetNoEnt++
}
return none, false
}
func (m *JMap[K, V, C]) Len() int {
return m.len
}
func (m *JMap[K, V, C]) Delete(key K) {
kh := m.comparator.Hash1(key)
for i, e := range m.store[kh] {
if m.comparator.Equals2(e.key, key) {
m.store[kh] = append(m.store[kh][:i], m.store[kh][i+1:]...)
m.len--
return
}
}
}
func (m *JMap[K, V, C]) Clear() {
m.store = make(map[int][]*entry[K, V])
}
type JPCMap struct {
store *JMap[*PredictionContext, *JMap[*PredictionContext, *PredictionContext, *ObjEqComparator[*PredictionContext]], *ObjEqComparator[*PredictionContext]]
size int
stats *JStatRec
}
func NewJPCMap(cType CollectionSource, desc string) *JPCMap {
m := &JPCMap{
store: NewJMap[*PredictionContext, *JMap[*PredictionContext, *PredictionContext, *ObjEqComparator[*PredictionContext]], *ObjEqComparator[*PredictionContext]](pContextEqInst, cType, desc),
}
if collectStats {
m.stats = &JStatRec{
Source: cType,
Description: desc,
}
// Track where we created it from if we are being asked to do so
if runtimeConfig.statsTraceStacks {
m.stats.CreateStack = debug.Stack()
}
Statistics.AddJStatRec(m.stats)
}
return m
}
func (pcm *JPCMap) Get(k1, k2 *PredictionContext) (*PredictionContext, bool) {
if collectStats {
pcm.stats.Gets++
}
// Do we have a map stored by k1?
//
m2, present := pcm.store.Get(k1)
if present {
if collectStats {
pcm.stats.GetHits++
}
// We found a map of values corresponding to k1, so now we need to look up k2 in that map
//
return m2.Get(k2)
}
if collectStats {
pcm.stats.GetMisses++
}
return nil, false
}
func (pcm *JPCMap) Put(k1, k2, v *PredictionContext) {
if collectStats {
pcm.stats.Puts++
}
// First does a map already exist for k1?
//
if m2, present := pcm.store.Get(k1); present {
if collectStats {
pcm.stats.PutHits++
}
_, present = m2.Put(k2, v)
if !present {
pcm.size++
if collectStats {
pcm.stats.CurSize = pcm.size
if pcm.size > pcm.stats.MaxSize {
pcm.stats.MaxSize = pcm.size
}
}
}
} else {
// No map found for k1, so we create it, add in our value, then store is
//
if collectStats {
pcm.stats.PutMisses++
m2 = NewJMap[*PredictionContext, *PredictionContext, *ObjEqComparator[*PredictionContext]](pContextEqInst, pcm.stats.Source, pcm.stats.Description+" map entry")
} else {
m2 = NewJMap[*PredictionContext, *PredictionContext, *ObjEqComparator[*PredictionContext]](pContextEqInst, PredictionContextCacheCollection, "map entry")
}
m2.Put(k2, v)
pcm.store.Put(k1, m2)
pcm.size++
}
}
type JPCMap2 struct {
store map[int][]JPCEntry
size int
stats *JStatRec
}
type JPCEntry struct {
k1, k2, v *PredictionContext
}
func NewJPCMap2(cType CollectionSource, desc string) *JPCMap2 {
m := &JPCMap2{
store: make(map[int][]JPCEntry, 1000),
}
if collectStats {
m.stats = &JStatRec{
Source: cType,
Description: desc,
}
// Track where we created it from if we are being asked to do so
if runtimeConfig.statsTraceStacks {
m.stats.CreateStack = debug.Stack()
}
Statistics.AddJStatRec(m.stats)
}
return m
}
func dHash(k1, k2 *PredictionContext) int {
return k1.cachedHash*31 + k2.cachedHash
}
func (pcm *JPCMap2) Get(k1, k2 *PredictionContext) (*PredictionContext, bool) {
if collectStats {
pcm.stats.Gets++
}
h := dHash(k1, k2)
var hClash bool
for _, e := range pcm.store[h] {
hClash = true
if e.k1.Equals(k1) && e.k2.Equals(k2) {
if collectStats {
pcm.stats.GetHits++
pcm.stats.GetHashConflicts++
}
return e.v, true
}
if collectStats {
pcm.stats.GetMisses++
}
}
if collectStats {
if hClash {
pcm.stats.GetHashConflicts++
}
pcm.stats.GetNoEnt++
}
return nil, false
}
func (pcm *JPCMap2) Put(k1, k2, v *PredictionContext) (*PredictionContext, bool) {
if collectStats {
pcm.stats.Puts++
}
h := dHash(k1, k2)
var hClash bool
for _, e := range pcm.store[h] {
hClash = true
if e.k1.Equals(k1) && e.k2.Equals(k2) {
if collectStats {
pcm.stats.PutHits++
pcm.stats.PutHashConflicts++
}
return e.v, true
}
if collectStats {
pcm.stats.PutMisses++
}
}
if collectStats {
if hClash {
pcm.stats.PutHashConflicts++
}
}
pcm.store[h] = append(pcm.store[h], JPCEntry{k1, k2, v})
pcm.size++
if collectStats {
pcm.stats.CurSize = pcm.size
if pcm.size > pcm.stats.MaxSize {
pcm.stats.MaxSize = pcm.size
}
}
return nil, false
}
type VisitEntry struct {
k *PredictionContext
v *PredictionContext
}
type VisitRecord struct {
store map[*PredictionContext]*PredictionContext
len int
stats *JStatRec
}
type VisitList struct {
cache *list.List
lock sync.RWMutex
}
var visitListPool = VisitList{
cache: list.New(),
lock: sync.RWMutex{},
}
// NewVisitRecord returns a new VisitRecord instance from the pool if available.
// Note that this "map" uses a pointer as a key because we are emulating the behavior of
// IdentityHashMap in Java, which uses the `==` operator to compare whether the keys are equal,
// which means is the key the same reference to an object rather than is it .equals() to another
// object.
func NewVisitRecord() *VisitRecord {
visitListPool.lock.Lock()
el := visitListPool.cache.Front()
defer visitListPool.lock.Unlock()
var vr *VisitRecord
if el == nil {
vr = &VisitRecord{
store: make(map[*PredictionContext]*PredictionContext),
}
if collectStats {
vr.stats = &JStatRec{
Source: PredictionContextCacheCollection,
Description: "VisitRecord",
}
// Track where we created it from if we are being asked to do so
if runtimeConfig.statsTraceStacks {
vr.stats.CreateStack = debug.Stack()
}
}
} else {
vr = el.Value.(*VisitRecord)
visitListPool.cache.Remove(el)
vr.store = make(map[*PredictionContext]*PredictionContext)
}
if collectStats {
Statistics.AddJStatRec(vr.stats)
}
return vr
}
func (vr *VisitRecord) Release() {
vr.len = 0
vr.store = nil
if collectStats {
vr.stats.MaxSize = 0
vr.stats.CurSize = 0
vr.stats.Gets = 0
vr.stats.GetHits = 0
vr.stats.GetMisses = 0
vr.stats.GetHashConflicts = 0
vr.stats.GetNoEnt = 0
vr.stats.Puts = 0
vr.stats.PutHits = 0
vr.stats.PutMisses = 0
vr.stats.PutHashConflicts = 0
vr.stats.MaxSlotSize = 0
}
visitListPool.lock.Lock()
visitListPool.cache.PushBack(vr)
visitListPool.lock.Unlock()
}
func (vr *VisitRecord) Get(k *PredictionContext) (*PredictionContext, bool) {
if collectStats {
vr.stats.Gets++
}
v := vr.store[k]
if v != nil {
if collectStats {
vr.stats.GetHits++
}
return v, true
}
if collectStats {
vr.stats.GetNoEnt++
}
return nil, false
}
func (vr *VisitRecord) Put(k, v *PredictionContext) (*PredictionContext, bool) {
if collectStats {
vr.stats.Puts++
}
vr.store[k] = v
vr.len++
if collectStats {
vr.stats.CurSize = vr.len
if vr.len > vr.stats.MaxSize {
vr.stats.MaxSize = vr.len
}
}
return v, false
}