rebase: update kubernetes to latest

updating the kubernetes release to the
latest in main go.mod

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
This commit is contained in:
Madhu Rajanna 2024-08-19 10:01:33 +02:00 committed by mergify[bot]
parent 63c4c05b35
commit 5a66991bb3
2173 changed files with 98906 additions and 61334 deletions

139
go.mod
View File

@ -33,15 +33,15 @@ require (
//
// when updating k8s.io/kubernetes, make sure to update the replace section too
//
k8s.io/api v0.30.3
k8s.io/apimachinery v0.30.3
k8s.io/api v0.31.0
k8s.io/apimachinery v0.31.0
k8s.io/client-go v12.0.0+incompatible
k8s.io/cloud-provider v0.30.3
k8s.io/cloud-provider v0.31.0
k8s.io/klog/v2 v2.130.1
k8s.io/kubernetes v1.30.3
k8s.io/mount-utils v0.30.3
k8s.io/pod-security-admission v0.30.3
k8s.io/utils v0.0.0-20230726121419-3b25d923346b
k8s.io/kubernetes v1.31.0
k8s.io/mount-utils v0.31.0
k8s.io/pod-security-admission v0.31.0
k8s.io/utils v0.0.0-20240711033017-18e509b52bc8
sigs.k8s.io/controller-runtime v0.18.5
)
@ -58,7 +58,7 @@ require (
github.com/NYTimes/gziphandler v1.1.1 // indirect
github.com/ansel1/merry v1.6.2 // indirect
github.com/ansel1/merry/v2 v2.0.1 // indirect
github.com/antlr/antlr4/runtime/Go/antlr/v4 v4.0.0-20230305170008-8188dc5388df // indirect
github.com/antlr4-go/antlr/v4 v4.13.0 // indirect
github.com/asaskevich/govalidator v0.0.0-20190424111038-f61b66f89f4a // indirect
github.com/aws/aws-sdk-go-v2 v1.30.3 // indirect
github.com/aws/aws-sdk-go-v2/internal/configsources v1.3.15 // indirect
@ -69,17 +69,17 @@ require (
github.com/beorn7/perks v1.0.1 // indirect
github.com/blang/semver/v4 v4.0.0 // indirect
github.com/cenkalti/backoff/v3 v3.2.2 // indirect
github.com/cenkalti/backoff/v4 v4.2.1 // indirect
github.com/cenkalti/backoff/v4 v4.3.0 // indirect
github.com/cespare/xxhash/v2 v2.3.0 // indirect
github.com/coreos/go-semver v0.3.1 // indirect
github.com/coreos/go-systemd/v22 v22.5.0 // indirect
github.com/davecgh/go-spew v1.1.2-0.20180830191138-d8f796af33cc // indirect
github.com/distribution/reference v0.5.0 // indirect
github.com/emicklei/go-restful/v3 v3.11.0 // indirect
github.com/evanphx/json-patch v5.6.0+incompatible // indirect
github.com/evanphx/json-patch/v5 v5.9.0 // indirect
github.com/felixge/httpsnoop v1.0.3 // indirect
github.com/felixge/httpsnoop v1.0.4 // indirect
github.com/fsnotify/fsnotify v1.7.0 // indirect
github.com/fxamacker/cbor/v2 v2.7.0 // indirect
github.com/gemalto/flume v0.13.0 // indirect
github.com/ghodss/yaml v1.0.1-0.20190212211648-25d852aebe32 // indirect
github.com/go-jose/go-jose/v4 v4.0.1 // indirect
@ -87,18 +87,18 @@ require (
github.com/go-logr/stdr v1.2.2 // indirect
github.com/go-openapi/jsonpointer v0.19.6 // indirect
github.com/go-openapi/jsonreference v0.20.2 // indirect
github.com/go-openapi/swag v0.22.3 // indirect
github.com/go-openapi/swag v0.22.4 // indirect
github.com/go-task/slim-sprig/v3 v3.0.0 // indirect
github.com/gogo/protobuf v1.3.2 // indirect
github.com/golang-jwt/jwt/v5 v5.2.1 // indirect
github.com/golang/groupcache v0.0.0-20210331224755-41bb18bfe9da // indirect
github.com/google/cel-go v0.17.8 // indirect
github.com/google/cel-go v0.20.1 // indirect
github.com/google/gnostic-models v0.6.8 // indirect
github.com/google/go-cmp v0.6.0 // indirect
github.com/google/gofuzz v1.2.0 // indirect
github.com/google/pprof v0.0.0-20240424215950-a892ee059fd6 // indirect
github.com/google/pprof v0.0.0-20240525223248-4bfdf5a9a2af // indirect
github.com/gorilla/websocket v1.5.0 // indirect
github.com/grpc-ecosystem/grpc-gateway/v2 v2.16.0 // indirect
github.com/grpc-ecosystem/grpc-gateway/v2 v2.20.0 // indirect
github.com/hashicorp/errwrap v1.1.0 // indirect
github.com/hashicorp/go-cleanhttp v0.5.2 // indirect
github.com/hashicorp/go-multierror v1.1.1 // indirect
@ -122,8 +122,8 @@ require (
github.com/mgutz/ansi v0.0.0-20200706080929-d51e80ef957d // indirect
github.com/mitchellh/go-homedir v1.1.0 // indirect
github.com/mitchellh/mapstructure v1.5.0 // indirect
github.com/moby/spdystream v0.2.0 // indirect
github.com/moby/sys/mountinfo v0.6.2 // indirect
github.com/moby/spdystream v0.4.0 // indirect
github.com/moby/sys/mountinfo v0.7.1 // indirect
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd // indirect
github.com/modern-go/reflect2 v1.0.2 // indirect
github.com/munnerz/goautoneg v0.0.0-20191010083416-a7dc8b61c822 // indirect
@ -136,51 +136,52 @@ require (
github.com/pmezard/go-difflib v1.0.1-0.20181226105442-5d4384ee4fb2 // indirect
github.com/prometheus/client_model v0.6.1 // indirect
github.com/prometheus/common v0.55.0 // indirect
github.com/prometheus/procfs v0.12.0 // indirect
github.com/prometheus/procfs v0.15.1 // indirect
github.com/ryanuber/go-glob v1.0.0 // indirect
github.com/sirupsen/logrus v1.9.0 // indirect
github.com/spf13/cobra v1.7.0 // indirect
github.com/sirupsen/logrus v1.9.3 // indirect
github.com/spf13/cobra v1.8.1 // indirect
github.com/spf13/pflag v1.0.5 // indirect
github.com/stoewer/go-strcase v1.2.0 // indirect
go.etcd.io/etcd/api/v3 v3.5.10 // indirect
go.etcd.io/etcd/client/pkg/v3 v3.5.10 // indirect
go.etcd.io/etcd/client/v3 v3.5.10 // indirect
go.opentelemetry.io/contrib/instrumentation/google.golang.org/grpc/otelgrpc v0.46.0 // indirect
go.opentelemetry.io/contrib/instrumentation/net/http/otelhttp v0.44.0 // indirect
go.opentelemetry.io/otel v1.21.0 // indirect
go.opentelemetry.io/otel/exporters/otlp/otlptrace v1.19.0 // indirect
go.opentelemetry.io/otel/exporters/otlp/otlptrace/otlptracegrpc v1.19.0 // indirect
go.opentelemetry.io/otel/metric v1.21.0 // indirect
go.opentelemetry.io/otel/sdk v1.21.0 // indirect
go.opentelemetry.io/otel/trace v1.21.0 // indirect
go.opentelemetry.io/proto/otlp v1.0.0 // indirect
github.com/stoewer/go-strcase v1.3.0 // indirect
github.com/x448/float16 v0.8.4 // indirect
go.etcd.io/etcd/api/v3 v3.5.14 // indirect
go.etcd.io/etcd/client/pkg/v3 v3.5.14 // indirect
go.etcd.io/etcd/client/v3 v3.5.14 // indirect
go.opentelemetry.io/contrib/instrumentation/google.golang.org/grpc/otelgrpc v0.53.0 // indirect
go.opentelemetry.io/contrib/instrumentation/net/http/otelhttp v0.53.0 // indirect
go.opentelemetry.io/otel v1.28.0 // indirect
go.opentelemetry.io/otel/exporters/otlp/otlptrace v1.28.0 // indirect
go.opentelemetry.io/otel/exporters/otlp/otlptrace/otlptracegrpc v1.27.0 // indirect
go.opentelemetry.io/otel/metric v1.28.0 // indirect
go.opentelemetry.io/otel/sdk v1.28.0 // indirect
go.opentelemetry.io/otel/trace v1.28.0 // indirect
go.opentelemetry.io/proto/otlp v1.3.1 // indirect
go.uber.org/multierr v1.11.0 // indirect
go.uber.org/zap v1.26.0 // indirect
golang.org/x/exp v0.0.0-20240719175910-8a7402abbf56 // indirect
golang.org/x/oauth2 v0.20.0 // indirect
golang.org/x/oauth2 v0.21.0 // indirect
golang.org/x/sync v0.8.0 // indirect
golang.org/x/term v0.23.0 // indirect
golang.org/x/text v0.17.0 // indirect
golang.org/x/time v0.3.0 // indirect
golang.org/x/time v0.5.0 // indirect
golang.org/x/tools v0.23.0 // indirect
gomodules.xyz/jsonpatch/v2 v2.4.0 // indirect
google.golang.org/genproto v0.0.0-20240227224415-6ceb2ff114de // indirect
google.golang.org/genproto/googleapis/api v0.0.0-20240528184218-531527333157 // indirect
google.golang.org/genproto/googleapis/rpc v0.0.0-20240528184218-531527333157 // indirect
google.golang.org/genproto/googleapis/rpc v0.0.0-20240701130421-f6361c86f094 // indirect
gopkg.in/evanphx/json-patch.v4 v4.12.0 // indirect
gopkg.in/inf.v0 v0.9.1 // indirect
gopkg.in/natefinch/lumberjack.v2 v2.2.1 // indirect
gopkg.in/yaml.v2 v2.4.0 // indirect
gopkg.in/yaml.v3 v3.0.1 // indirect
k8s.io/apiextensions-apiserver v0.30.1 // indirect
k8s.io/apiserver v0.30.3 // indirect
k8s.io/component-base v0.30.3 // indirect
k8s.io/component-helpers v0.30.3 // indirect
k8s.io/controller-manager v0.30.3 // indirect
k8s.io/kms v0.30.3 // indirect
k8s.io/apiserver v0.31.0 // indirect
k8s.io/component-base v0.31.0 // indirect
k8s.io/component-helpers v0.31.0 // indirect
k8s.io/controller-manager v0.31.0 // indirect
k8s.io/kms v0.31.0 // indirect
k8s.io/kube-openapi v0.0.0-20240228011516-70dd3763d340 // indirect
k8s.io/kubectl v0.0.0 // indirect
k8s.io/kubelet v0.0.0 // indirect
sigs.k8s.io/apiserver-network-proxy/konnectivity-client v0.29.0 // indirect
sigs.k8s.io/apiserver-network-proxy/konnectivity-client v0.30.3 // indirect
sigs.k8s.io/json v0.0.0-20221116044647-bc3834ca7abd // indirect
sigs.k8s.io/structured-merge-diff/v4 v4.4.1 // indirect
sigs.k8s.io/yaml v1.4.0 // indirect
@ -204,35 +205,35 @@ replace (
//
// k8s.io/kubernetes depends on these k8s.io packages, but unversioned
//
k8s.io/api => k8s.io/api v0.30.3
k8s.io/apiextensions-apiserver => k8s.io/apiextensions-apiserver v0.30.3
k8s.io/apimachinery => k8s.io/apimachinery v0.30.3
k8s.io/apiserver => k8s.io/apiserver v0.30.3
k8s.io/cli-runtime => k8s.io/cli-runtime v0.30.3
k8s.io/client-go => k8s.io/client-go v0.30.3
k8s.io/cloud-provider => k8s.io/cloud-provider v0.30.3
k8s.io/cluster-bootstrap => k8s.io/cluster-bootstrap v0.30.3
k8s.io/code-generator => k8s.io/code-generator v0.30.3
k8s.io/component-base => k8s.io/component-base v0.30.3
k8s.io/component-helpers => k8s.io/component-helpers v0.30.3
k8s.io/controller-manager => k8s.io/controller-manager v0.30.3
k8s.io/cri-api => k8s.io/cri-api v0.30.3
k8s.io/csi-translation-lib => k8s.io/csi-translation-lib v0.30.3
k8s.io/dynamic-resource-allocation => k8s.io/dynamic-resource-allocation v0.30.3
k8s.io/endpointslice => k8s.io/endpointslice v0.30.3
k8s.io/kube-aggregator => k8s.io/kube-aggregator v0.30.3
k8s.io/kube-controller-manager => k8s.io/kube-controller-manager v0.30.3
k8s.io/kube-proxy => k8s.io/kube-proxy v0.30.3
k8s.io/kube-scheduler => k8s.io/kube-scheduler v0.30.3
k8s.io/kubectl => k8s.io/kubectl v0.30.3
k8s.io/kubelet => k8s.io/kubelet v0.30.3
k8s.io/legacy-cloud-providers => k8s.io/legacy-cloud-providers v0.30.3
k8s.io/metrics => k8s.io/metrics v0.30.3
k8s.io/api => k8s.io/api v0.31.0
k8s.io/apiextensions-apiserver => k8s.io/apiextensions-apiserver v0.31.0
k8s.io/apimachinery => k8s.io/apimachinery v0.31.0
k8s.io/apiserver => k8s.io/apiserver v0.31.0
k8s.io/cli-runtime => k8s.io/cli-runtime v0.31.0
k8s.io/client-go => k8s.io/client-go v0.31.0
k8s.io/cloud-provider => k8s.io/cloud-provider v0.31.0
k8s.io/cluster-bootstrap => k8s.io/cluster-bootstrap v0.31.0
k8s.io/code-generator => k8s.io/code-generator v0.31.0
k8s.io/component-base => k8s.io/component-base v0.31.0
k8s.io/component-helpers => k8s.io/component-helpers v0.31.0
k8s.io/controller-manager => k8s.io/controller-manager v0.31.0
k8s.io/cri-api => k8s.io/cri-api v0.31.0
k8s.io/csi-translation-lib => k8s.io/csi-translation-lib v0.31.0
k8s.io/dynamic-resource-allocation => k8s.io/dynamic-resource-allocation v0.31.0
k8s.io/endpointslice => k8s.io/endpointslice v0.31.0
k8s.io/kube-aggregator => k8s.io/kube-aggregator v0.31.0
k8s.io/kube-controller-manager => k8s.io/kube-controller-manager v0.31.0
k8s.io/kube-proxy => k8s.io/kube-proxy v0.31.0
k8s.io/kube-scheduler => k8s.io/kube-scheduler v0.31.0
k8s.io/kubectl => k8s.io/kubectl v0.31.0
k8s.io/kubelet => k8s.io/kubelet v0.31.0
k8s.io/legacy-cloud-providers => k8s.io/legacy-cloud-providers v0.31.0
k8s.io/metrics => k8s.io/metrics v0.31.0
// TODO: replace with latest once https://github.com/ceph/ceph-csi/issues/4633 is fixed
k8s.io/mount-utils => k8s.io/mount-utils v0.29.3
k8s.io/pod-security-admission => k8s.io/pod-security-admission v0.30.3
k8s.io/sample-apiserver => k8s.io/sample-apiserver v0.30.3
k8s.io/pod-security-admission => k8s.io/pod-security-admission v0.31.0
k8s.io/sample-apiserver => k8s.io/sample-apiserver v0.31.0
// layeh.com seems to be misbehaving
layeh.com/radius => github.com/layeh/radius v0.0.0-20190322222518-890bc1058917
)

1050
go.sum

File diff suppressed because it is too large Load Diff

View File

@ -1,26 +0,0 @@
Copyright 2021 The ANTLR Project
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,68 +0,0 @@
/*
Package antlr implements the Go version of the ANTLR 4 runtime.
# The ANTLR Tool
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing,
or translating structured text or binary files. It's widely used to build languages, tools, and frameworks.
From a grammar, ANTLR generates a parser that can build parse trees and also generates a listener interface
(or visitor) that makes it easy to respond to the recognition of phrases of interest.
# Code Generation
ANTLR supports the generation of code in a number of [target languages], and the generated code is supported by a
runtime library, written specifically to support the generated code in the target language. This library is the
runtime for the Go target.
To generate code for the go target, it is generally recommended to place the source grammar files in a package of
their own, and use the `.sh` script method of generating code, using the go generate directive. In that same directory
it is usual, though not required, to place the antlr tool that should be used to generate the code. That does mean
that the antlr tool JAR file will be checked in to your source code control though, so you are free to use any other
way of specifying the version of the ANTLR tool to use, such as aliasing in `.zshrc` or equivalent, or a profile in
your IDE, or configuration in your CI system.
Here is a general template for an ANTLR based recognizer in Go:
.
myproject
parser
mygrammar.g4
antlr-4.12.0-complete.jar
error_listeners.go
generate.go
generate.sh
go.mod
go.sum
main.go
main_test.go
Make sure that the package statement in your grammar file(s) reflects the go package they exist in.
The generate.go file then looks like this:
package parser
//go:generate ./generate.sh
And the generate.sh file will look similar to this:
#!/bin/sh
alias antlr4='java -Xmx500M -cp "./antlr4-4.12.0-complete.jar:$CLASSPATH" org.antlr.v4.Tool'
antlr4 -Dlanguage=Go -no-visitor -package parser *.g4
depending on whether you want visitors or listeners or any other ANTLR options.
From the command line at the root of your package myproject you can then simply issue the command:
go generate ./...
# Copyright Notice
Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
Use of this file is governed by the BSD 3-clause license, which can be found in the [LICENSE.txt] file in the project root.
[target languages]: https://github.com/antlr/antlr4/tree/master/runtime
[LICENSE.txt]: https://github.com/antlr/antlr4/blob/master/LICENSE.txt
*/
package antlr

View File

@ -1,303 +0,0 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"fmt"
)
// ATNConfig is a tuple: (ATN state, predicted alt, syntactic, semantic
// context). The syntactic context is a graph-structured stack node whose
// path(s) to the root is the rule invocation(s) chain used to arrive at the
// state. The semantic context is the tree of semantic predicates encountered
// before reaching an ATN state.
type ATNConfig interface {
Equals(o Collectable[ATNConfig]) bool
Hash() int
GetState() ATNState
GetAlt() int
GetSemanticContext() SemanticContext
GetContext() PredictionContext
SetContext(PredictionContext)
GetReachesIntoOuterContext() int
SetReachesIntoOuterContext(int)
String() string
getPrecedenceFilterSuppressed() bool
setPrecedenceFilterSuppressed(bool)
}
type BaseATNConfig struct {
precedenceFilterSuppressed bool
state ATNState
alt int
context PredictionContext
semanticContext SemanticContext
reachesIntoOuterContext int
}
func NewBaseATNConfig7(old *BaseATNConfig) ATNConfig { // TODO: Dup
return &BaseATNConfig{
state: old.state,
alt: old.alt,
context: old.context,
semanticContext: old.semanticContext,
reachesIntoOuterContext: old.reachesIntoOuterContext,
}
}
func NewBaseATNConfig6(state ATNState, alt int, context PredictionContext) *BaseATNConfig {
return NewBaseATNConfig5(state, alt, context, SemanticContextNone)
}
func NewBaseATNConfig5(state ATNState, alt int, context PredictionContext, semanticContext SemanticContext) *BaseATNConfig {
if semanticContext == nil {
panic("semanticContext cannot be nil") // TODO: Necessary?
}
return &BaseATNConfig{state: state, alt: alt, context: context, semanticContext: semanticContext}
}
func NewBaseATNConfig4(c ATNConfig, state ATNState) *BaseATNConfig {
return NewBaseATNConfig(c, state, c.GetContext(), c.GetSemanticContext())
}
func NewBaseATNConfig3(c ATNConfig, state ATNState, semanticContext SemanticContext) *BaseATNConfig {
return NewBaseATNConfig(c, state, c.GetContext(), semanticContext)
}
func NewBaseATNConfig2(c ATNConfig, semanticContext SemanticContext) *BaseATNConfig {
return NewBaseATNConfig(c, c.GetState(), c.GetContext(), semanticContext)
}
func NewBaseATNConfig1(c ATNConfig, state ATNState, context PredictionContext) *BaseATNConfig {
return NewBaseATNConfig(c, state, context, c.GetSemanticContext())
}
func NewBaseATNConfig(c ATNConfig, state ATNState, context PredictionContext, semanticContext SemanticContext) *BaseATNConfig {
if semanticContext == nil {
panic("semanticContext cannot be nil")
}
return &BaseATNConfig{
state: state,
alt: c.GetAlt(),
context: context,
semanticContext: semanticContext,
reachesIntoOuterContext: c.GetReachesIntoOuterContext(),
precedenceFilterSuppressed: c.getPrecedenceFilterSuppressed(),
}
}
func (b *BaseATNConfig) getPrecedenceFilterSuppressed() bool {
return b.precedenceFilterSuppressed
}
func (b *BaseATNConfig) setPrecedenceFilterSuppressed(v bool) {
b.precedenceFilterSuppressed = v
}
func (b *BaseATNConfig) GetState() ATNState {
return b.state
}
func (b *BaseATNConfig) GetAlt() int {
return b.alt
}
func (b *BaseATNConfig) SetContext(v PredictionContext) {
b.context = v
}
func (b *BaseATNConfig) GetContext() PredictionContext {
return b.context
}
func (b *BaseATNConfig) GetSemanticContext() SemanticContext {
return b.semanticContext
}
func (b *BaseATNConfig) GetReachesIntoOuterContext() int {
return b.reachesIntoOuterContext
}
func (b *BaseATNConfig) SetReachesIntoOuterContext(v int) {
b.reachesIntoOuterContext = v
}
// Equals is the default comparison function for an ATNConfig when no specialist implementation is required
// for a collection.
//
// An ATN configuration is equal to another if both have the same state, they
// predict the same alternative, and syntactic/semantic contexts are the same.
func (b *BaseATNConfig) Equals(o Collectable[ATNConfig]) bool {
if b == o {
return true
} else if o == nil {
return false
}
var other, ok = o.(*BaseATNConfig)
if !ok {
return false
}
var equal bool
if b.context == nil {
equal = other.context == nil
} else {
equal = b.context.Equals(other.context)
}
var (
nums = b.state.GetStateNumber() == other.state.GetStateNumber()
alts = b.alt == other.alt
cons = b.semanticContext.Equals(other.semanticContext)
sups = b.precedenceFilterSuppressed == other.precedenceFilterSuppressed
)
return nums && alts && cons && sups && equal
}
// Hash is the default hash function for BaseATNConfig, when no specialist hash function
// is required for a collection
func (b *BaseATNConfig) Hash() int {
var c int
if b.context != nil {
c = b.context.Hash()
}
h := murmurInit(7)
h = murmurUpdate(h, b.state.GetStateNumber())
h = murmurUpdate(h, b.alt)
h = murmurUpdate(h, c)
h = murmurUpdate(h, b.semanticContext.Hash())
return murmurFinish(h, 4)
}
func (b *BaseATNConfig) String() string {
var s1, s2, s3 string
if b.context != nil {
s1 = ",[" + fmt.Sprint(b.context) + "]"
}
if b.semanticContext != SemanticContextNone {
s2 = "," + fmt.Sprint(b.semanticContext)
}
if b.reachesIntoOuterContext > 0 {
s3 = ",up=" + fmt.Sprint(b.reachesIntoOuterContext)
}
return fmt.Sprintf("(%v,%v%v%v%v)", b.state, b.alt, s1, s2, s3)
}
type LexerATNConfig struct {
*BaseATNConfig
lexerActionExecutor *LexerActionExecutor
passedThroughNonGreedyDecision bool
}
func NewLexerATNConfig6(state ATNState, alt int, context PredictionContext) *LexerATNConfig {
return &LexerATNConfig{BaseATNConfig: NewBaseATNConfig5(state, alt, context, SemanticContextNone)}
}
func NewLexerATNConfig5(state ATNState, alt int, context PredictionContext, lexerActionExecutor *LexerActionExecutor) *LexerATNConfig {
return &LexerATNConfig{
BaseATNConfig: NewBaseATNConfig5(state, alt, context, SemanticContextNone),
lexerActionExecutor: lexerActionExecutor,
}
}
func NewLexerATNConfig4(c *LexerATNConfig, state ATNState) *LexerATNConfig {
return &LexerATNConfig{
BaseATNConfig: NewBaseATNConfig(c, state, c.GetContext(), c.GetSemanticContext()),
lexerActionExecutor: c.lexerActionExecutor,
passedThroughNonGreedyDecision: checkNonGreedyDecision(c, state),
}
}
func NewLexerATNConfig3(c *LexerATNConfig, state ATNState, lexerActionExecutor *LexerActionExecutor) *LexerATNConfig {
return &LexerATNConfig{
BaseATNConfig: NewBaseATNConfig(c, state, c.GetContext(), c.GetSemanticContext()),
lexerActionExecutor: lexerActionExecutor,
passedThroughNonGreedyDecision: checkNonGreedyDecision(c, state),
}
}
func NewLexerATNConfig2(c *LexerATNConfig, state ATNState, context PredictionContext) *LexerATNConfig {
return &LexerATNConfig{
BaseATNConfig: NewBaseATNConfig(c, state, context, c.GetSemanticContext()),
lexerActionExecutor: c.lexerActionExecutor,
passedThroughNonGreedyDecision: checkNonGreedyDecision(c, state),
}
}
func NewLexerATNConfig1(state ATNState, alt int, context PredictionContext) *LexerATNConfig {
return &LexerATNConfig{BaseATNConfig: NewBaseATNConfig5(state, alt, context, SemanticContextNone)}
}
// Hash is the default hash function for LexerATNConfig objects, it can be used directly or via
// the default comparator [ObjEqComparator].
func (l *LexerATNConfig) Hash() int {
var f int
if l.passedThroughNonGreedyDecision {
f = 1
} else {
f = 0
}
h := murmurInit(7)
h = murmurUpdate(h, l.state.GetStateNumber())
h = murmurUpdate(h, l.alt)
h = murmurUpdate(h, l.context.Hash())
h = murmurUpdate(h, l.semanticContext.Hash())
h = murmurUpdate(h, f)
h = murmurUpdate(h, l.lexerActionExecutor.Hash())
h = murmurFinish(h, 6)
return h
}
// Equals is the default comparison function for LexerATNConfig objects, it can be used directly or via
// the default comparator [ObjEqComparator].
func (l *LexerATNConfig) Equals(other Collectable[ATNConfig]) bool {
if l == other {
return true
}
var othert, ok = other.(*LexerATNConfig)
if l == other {
return true
} else if !ok {
return false
} else if l.passedThroughNonGreedyDecision != othert.passedThroughNonGreedyDecision {
return false
}
var b bool
if l.lexerActionExecutor != nil {
b = !l.lexerActionExecutor.Equals(othert.lexerActionExecutor)
} else {
b = othert.lexerActionExecutor != nil
}
if b {
return false
}
return l.BaseATNConfig.Equals(othert.BaseATNConfig)
}
func checkNonGreedyDecision(source *LexerATNConfig, target ATNState) bool {
var ds, ok = target.(DecisionState)
return source.passedThroughNonGreedyDecision || (ok && ds.getNonGreedy())
}

View File

@ -1,441 +0,0 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"fmt"
)
type ATNConfigSet interface {
Hash() int
Equals(o Collectable[ATNConfig]) bool
Add(ATNConfig, *DoubleDict) bool
AddAll([]ATNConfig) bool
GetStates() *JStore[ATNState, Comparator[ATNState]]
GetPredicates() []SemanticContext
GetItems() []ATNConfig
OptimizeConfigs(interpreter *BaseATNSimulator)
Length() int
IsEmpty() bool
Contains(ATNConfig) bool
ContainsFast(ATNConfig) bool
Clear()
String() string
HasSemanticContext() bool
SetHasSemanticContext(v bool)
ReadOnly() bool
SetReadOnly(bool)
GetConflictingAlts() *BitSet
SetConflictingAlts(*BitSet)
Alts() *BitSet
FullContext() bool
GetUniqueAlt() int
SetUniqueAlt(int)
GetDipsIntoOuterContext() bool
SetDipsIntoOuterContext(bool)
}
// BaseATNConfigSet is a specialized set of ATNConfig that tracks information
// about its elements and can combine similar configurations using a
// graph-structured stack.
type BaseATNConfigSet struct {
cachedHash int
// configLookup is used to determine whether two BaseATNConfigSets are equal. We
// need all configurations with the same (s, i, _, semctx) to be equal. A key
// effectively doubles the number of objects associated with ATNConfigs. All
// keys are hashed by (s, i, _, pi), not including the context. Wiped out when
// read-only because a set becomes a DFA state.
configLookup *JStore[ATNConfig, Comparator[ATNConfig]]
// configs is the added elements.
configs []ATNConfig
// TODO: These fields make me pretty uncomfortable, but it is nice to pack up
// info together because it saves recomputation. Can we track conflicts as they
// are added to save scanning configs later?
conflictingAlts *BitSet
// dipsIntoOuterContext is used by parsers and lexers. In a lexer, it indicates
// we hit a pred while computing a closure operation. Do not make a DFA state
// from the BaseATNConfigSet in this case. TODO: How is this used by parsers?
dipsIntoOuterContext bool
// fullCtx is whether it is part of a full context LL prediction. Used to
// determine how to merge $. It is a wildcard with SLL, but not for an LL
// context merge.
fullCtx bool
// Used in parser and lexer. In lexer, it indicates we hit a pred
// while computing a closure operation. Don't make a DFA state from a.
hasSemanticContext bool
// readOnly is whether it is read-only. Do not
// allow any code to manipulate the set if true because DFA states will point at
// sets and those must not change. It not, protect other fields; conflictingAlts
// in particular, which is assigned after readOnly.
readOnly bool
// TODO: These fields make me pretty uncomfortable, but it is nice to pack up
// info together because it saves recomputation. Can we track conflicts as they
// are added to save scanning configs later?
uniqueAlt int
}
func (b *BaseATNConfigSet) Alts() *BitSet {
alts := NewBitSet()
for _, it := range b.configs {
alts.add(it.GetAlt())
}
return alts
}
func NewBaseATNConfigSet(fullCtx bool) *BaseATNConfigSet {
return &BaseATNConfigSet{
cachedHash: -1,
configLookup: NewJStore[ATNConfig, Comparator[ATNConfig]](aConfCompInst),
fullCtx: fullCtx,
}
}
// Add merges contexts with existing configs for (s, i, pi, _), where s is the
// ATNConfig.state, i is the ATNConfig.alt, and pi is the
// ATNConfig.semanticContext. We use (s,i,pi) as the key. Updates
// dipsIntoOuterContext and hasSemanticContext when necessary.
func (b *BaseATNConfigSet) Add(config ATNConfig, mergeCache *DoubleDict) bool {
if b.readOnly {
panic("set is read-only")
}
if config.GetSemanticContext() != SemanticContextNone {
b.hasSemanticContext = true
}
if config.GetReachesIntoOuterContext() > 0 {
b.dipsIntoOuterContext = true
}
existing, present := b.configLookup.Put(config)
// The config was not already in the set
//
if !present {
b.cachedHash = -1
b.configs = append(b.configs, config) // Track order here
return true
}
// Merge a previous (s, i, pi, _) with it and save the result
rootIsWildcard := !b.fullCtx
merged := merge(existing.GetContext(), config.GetContext(), rootIsWildcard, mergeCache)
// No need to check for existing.context because config.context is in the cache,
// since the only way to create new graphs is the "call rule" and here. We cache
// at both places.
existing.SetReachesIntoOuterContext(intMax(existing.GetReachesIntoOuterContext(), config.GetReachesIntoOuterContext()))
// Preserve the precedence filter suppression during the merge
if config.getPrecedenceFilterSuppressed() {
existing.setPrecedenceFilterSuppressed(true)
}
// Replace the context because there is no need to do alt mapping
existing.SetContext(merged)
return true
}
func (b *BaseATNConfigSet) GetStates() *JStore[ATNState, Comparator[ATNState]] {
// states uses the standard comparator provided by the ATNState instance
//
states := NewJStore[ATNState, Comparator[ATNState]](aStateEqInst)
for i := 0; i < len(b.configs); i++ {
states.Put(b.configs[i].GetState())
}
return states
}
func (b *BaseATNConfigSet) HasSemanticContext() bool {
return b.hasSemanticContext
}
func (b *BaseATNConfigSet) SetHasSemanticContext(v bool) {
b.hasSemanticContext = v
}
func (b *BaseATNConfigSet) GetPredicates() []SemanticContext {
preds := make([]SemanticContext, 0)
for i := 0; i < len(b.configs); i++ {
c := b.configs[i].GetSemanticContext()
if c != SemanticContextNone {
preds = append(preds, c)
}
}
return preds
}
func (b *BaseATNConfigSet) GetItems() []ATNConfig {
return b.configs
}
func (b *BaseATNConfigSet) OptimizeConfigs(interpreter *BaseATNSimulator) {
if b.readOnly {
panic("set is read-only")
}
if b.configLookup.Len() == 0 {
return
}
for i := 0; i < len(b.configs); i++ {
config := b.configs[i]
config.SetContext(interpreter.getCachedContext(config.GetContext()))
}
}
func (b *BaseATNConfigSet) AddAll(coll []ATNConfig) bool {
for i := 0; i < len(coll); i++ {
b.Add(coll[i], nil)
}
return false
}
// Compare is a hack function just to verify that adding DFAstares to the known
// set works, so long as comparison of ATNConfigSet s works. For that to work, we
// need to make sure that the set of ATNConfigs in two sets are equivalent. We can't
// know the order, so we do this inefficient hack. If this proves the point, then
// we can change the config set to a better structure.
func (b *BaseATNConfigSet) Compare(bs *BaseATNConfigSet) bool {
if len(b.configs) != len(bs.configs) {
return false
}
for _, c := range b.configs {
found := false
for _, c2 := range bs.configs {
if c.Equals(c2) {
found = true
break
}
}
if !found {
return false
}
}
return true
}
func (b *BaseATNConfigSet) Equals(other Collectable[ATNConfig]) bool {
if b == other {
return true
} else if _, ok := other.(*BaseATNConfigSet); !ok {
return false
}
other2 := other.(*BaseATNConfigSet)
return b.configs != nil &&
b.fullCtx == other2.fullCtx &&
b.uniqueAlt == other2.uniqueAlt &&
b.conflictingAlts == other2.conflictingAlts &&
b.hasSemanticContext == other2.hasSemanticContext &&
b.dipsIntoOuterContext == other2.dipsIntoOuterContext &&
b.Compare(other2)
}
func (b *BaseATNConfigSet) Hash() int {
if b.readOnly {
if b.cachedHash == -1 {
b.cachedHash = b.hashCodeConfigs()
}
return b.cachedHash
}
return b.hashCodeConfigs()
}
func (b *BaseATNConfigSet) hashCodeConfigs() int {
h := 1
for _, config := range b.configs {
h = 31*h + config.Hash()
}
return h
}
func (b *BaseATNConfigSet) Length() int {
return len(b.configs)
}
func (b *BaseATNConfigSet) IsEmpty() bool {
return len(b.configs) == 0
}
func (b *BaseATNConfigSet) Contains(item ATNConfig) bool {
if b.configLookup == nil {
panic("not implemented for read-only sets")
}
return b.configLookup.Contains(item)
}
func (b *BaseATNConfigSet) ContainsFast(item ATNConfig) bool {
if b.configLookup == nil {
panic("not implemented for read-only sets")
}
return b.configLookup.Contains(item) // TODO: containsFast is not implemented for Set
}
func (b *BaseATNConfigSet) Clear() {
if b.readOnly {
panic("set is read-only")
}
b.configs = make([]ATNConfig, 0)
b.cachedHash = -1
b.configLookup = NewJStore[ATNConfig, Comparator[ATNConfig]](atnConfCompInst)
}
func (b *BaseATNConfigSet) FullContext() bool {
return b.fullCtx
}
func (b *BaseATNConfigSet) GetDipsIntoOuterContext() bool {
return b.dipsIntoOuterContext
}
func (b *BaseATNConfigSet) SetDipsIntoOuterContext(v bool) {
b.dipsIntoOuterContext = v
}
func (b *BaseATNConfigSet) GetUniqueAlt() int {
return b.uniqueAlt
}
func (b *BaseATNConfigSet) SetUniqueAlt(v int) {
b.uniqueAlt = v
}
func (b *BaseATNConfigSet) GetConflictingAlts() *BitSet {
return b.conflictingAlts
}
func (b *BaseATNConfigSet) SetConflictingAlts(v *BitSet) {
b.conflictingAlts = v
}
func (b *BaseATNConfigSet) ReadOnly() bool {
return b.readOnly
}
func (b *BaseATNConfigSet) SetReadOnly(readOnly bool) {
b.readOnly = readOnly
if readOnly {
b.configLookup = nil // Read only, so no need for the lookup cache
}
}
func (b *BaseATNConfigSet) String() string {
s := "["
for i, c := range b.configs {
s += c.String()
if i != len(b.configs)-1 {
s += ", "
}
}
s += "]"
if b.hasSemanticContext {
s += ",hasSemanticContext=" + fmt.Sprint(b.hasSemanticContext)
}
if b.uniqueAlt != ATNInvalidAltNumber {
s += ",uniqueAlt=" + fmt.Sprint(b.uniqueAlt)
}
if b.conflictingAlts != nil {
s += ",conflictingAlts=" + b.conflictingAlts.String()
}
if b.dipsIntoOuterContext {
s += ",dipsIntoOuterContext"
}
return s
}
type OrderedATNConfigSet struct {
*BaseATNConfigSet
}
func NewOrderedATNConfigSet() *OrderedATNConfigSet {
b := NewBaseATNConfigSet(false)
// This set uses the standard Hash() and Equals() from ATNConfig
b.configLookup = NewJStore[ATNConfig, Comparator[ATNConfig]](aConfEqInst)
return &OrderedATNConfigSet{BaseATNConfigSet: b}
}
func hashATNConfig(i interface{}) int {
o := i.(ATNConfig)
hash := 7
hash = 31*hash + o.GetState().GetStateNumber()
hash = 31*hash + o.GetAlt()
hash = 31*hash + o.GetSemanticContext().Hash()
return hash
}
func equalATNConfigs(a, b interface{}) bool {
if a == nil || b == nil {
return false
}
if a == b {
return true
}
var ai, ok = a.(ATNConfig)
var bi, ok1 = b.(ATNConfig)
if !ok || !ok1 {
return false
}
if ai.GetState().GetStateNumber() != bi.GetState().GetStateNumber() {
return false
}
if ai.GetAlt() != bi.GetAlt() {
return false
}
return ai.GetSemanticContext().Equals(bi.GetSemanticContext())
}

View File

@ -1,113 +0,0 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
type InputStream struct {
name string
index int
data []rune
size int
}
func NewInputStream(data string) *InputStream {
is := new(InputStream)
is.name = "<empty>"
is.index = 0
is.data = []rune(data)
is.size = len(is.data) // number of runes
return is
}
func (is *InputStream) reset() {
is.index = 0
}
func (is *InputStream) Consume() {
if is.index >= is.size {
// assert is.LA(1) == TokenEOF
panic("cannot consume EOF")
}
is.index++
}
func (is *InputStream) LA(offset int) int {
if offset == 0 {
return 0 // nil
}
if offset < 0 {
offset++ // e.g., translate LA(-1) to use offset=0
}
pos := is.index + offset - 1
if pos < 0 || pos >= is.size { // invalid
return TokenEOF
}
return int(is.data[pos])
}
func (is *InputStream) LT(offset int) int {
return is.LA(offset)
}
func (is *InputStream) Index() int {
return is.index
}
func (is *InputStream) Size() int {
return is.size
}
// mark/release do nothing we have entire buffer
func (is *InputStream) Mark() int {
return -1
}
func (is *InputStream) Release(marker int) {
}
func (is *InputStream) Seek(index int) {
if index <= is.index {
is.index = index // just jump don't update stream state (line,...)
return
}
// seek forward
is.index = intMin(index, is.size)
}
func (is *InputStream) GetText(start int, stop int) string {
if stop >= is.size {
stop = is.size - 1
}
if start >= is.size {
return ""
}
return string(is.data[start : stop+1])
}
func (is *InputStream) GetTextFromTokens(start, stop Token) string {
if start != nil && stop != nil {
return is.GetTextFromInterval(NewInterval(start.GetTokenIndex(), stop.GetTokenIndex()))
}
return ""
}
func (is *InputStream) GetTextFromInterval(i *Interval) string {
return is.GetText(i.Start, i.Stop)
}
func (*InputStream) GetSourceName() string {
return "Obtained from string"
}
func (is *InputStream) String() string {
return string(is.data)
}

View File

@ -1,198 +0,0 @@
package antlr
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
import (
"sort"
)
// Collectable is an interface that a struct should implement if it is to be
// usable as a key in these collections.
type Collectable[T any] interface {
Hash() int
Equals(other Collectable[T]) bool
}
type Comparator[T any] interface {
Hash1(o T) int
Equals2(T, T) bool
}
// JStore implements a container that allows the use of a struct to calculate the key
// for a collection of values akin to map. This is not meant to be a full-blown HashMap but just
// serve the needs of the ANTLR Go runtime.
//
// For ease of porting the logic of the runtime from the master target (Java), this collection
// operates in a similar way to Java, in that it can use any struct that supplies a Hash() and Equals()
// function as the key. The values are stored in a standard go map which internally is a form of hashmap
// itself, the key for the go map is the hash supplied by the key object. The collection is able to deal with
// hash conflicts by using a simple slice of values associated with the hash code indexed bucket. That isn't
// particularly efficient, but it is simple, and it works. As this is specifically for the ANTLR runtime, and
// we understand the requirements, then this is fine - this is not a general purpose collection.
type JStore[T any, C Comparator[T]] struct {
store map[int][]T
len int
comparator Comparator[T]
}
func NewJStore[T any, C Comparator[T]](comparator Comparator[T]) *JStore[T, C] {
if comparator == nil {
panic("comparator cannot be nil")
}
s := &JStore[T, C]{
store: make(map[int][]T, 1),
comparator: comparator,
}
return s
}
// Put will store given value in the collection. Note that the key for storage is generated from
// the value itself - this is specifically because that is what ANTLR needs - this would not be useful
// as any kind of general collection.
//
// If the key has a hash conflict, then the value will be added to the slice of values associated with the
// hash, unless the value is already in the slice, in which case the existing value is returned. Value equivalence is
// tested by calling the equals() method on the key.
//
// # If the given value is already present in the store, then the existing value is returned as v and exists is set to true
//
// If the given value is not present in the store, then the value is added to the store and returned as v and exists is set to false.
func (s *JStore[T, C]) Put(value T) (v T, exists bool) { //nolint:ireturn
kh := s.comparator.Hash1(value)
for _, v1 := range s.store[kh] {
if s.comparator.Equals2(value, v1) {
return v1, true
}
}
s.store[kh] = append(s.store[kh], value)
s.len++
return value, false
}
// Get will return the value associated with the key - the type of the key is the same type as the value
// which would not generally be useful, but this is a specific thing for ANTLR where the key is
// generated using the object we are going to store.
func (s *JStore[T, C]) Get(key T) (T, bool) { //nolint:ireturn
kh := s.comparator.Hash1(key)
for _, v := range s.store[kh] {
if s.comparator.Equals2(key, v) {
return v, true
}
}
return key, false
}
// Contains returns true if the given key is present in the store
func (s *JStore[T, C]) Contains(key T) bool { //nolint:ireturn
_, present := s.Get(key)
return present
}
func (s *JStore[T, C]) SortedSlice(less func(i, j T) bool) []T {
vs := make([]T, 0, len(s.store))
for _, v := range s.store {
vs = append(vs, v...)
}
sort.Slice(vs, func(i, j int) bool {
return less(vs[i], vs[j])
})
return vs
}
func (s *JStore[T, C]) Each(f func(T) bool) {
for _, e := range s.store {
for _, v := range e {
f(v)
}
}
}
func (s *JStore[T, C]) Len() int {
return s.len
}
func (s *JStore[T, C]) Values() []T {
vs := make([]T, 0, len(s.store))
for _, e := range s.store {
for _, v := range e {
vs = append(vs, v)
}
}
return vs
}
type entry[K, V any] struct {
key K
val V
}
type JMap[K, V any, C Comparator[K]] struct {
store map[int][]*entry[K, V]
len int
comparator Comparator[K]
}
func NewJMap[K, V any, C Comparator[K]](comparator Comparator[K]) *JMap[K, V, C] {
return &JMap[K, V, C]{
store: make(map[int][]*entry[K, V], 1),
comparator: comparator,
}
}
func (m *JMap[K, V, C]) Put(key K, val V) {
kh := m.comparator.Hash1(key)
m.store[kh] = append(m.store[kh], &entry[K, V]{key, val})
m.len++
}
func (m *JMap[K, V, C]) Values() []V {
vs := make([]V, 0, len(m.store))
for _, e := range m.store {
for _, v := range e {
vs = append(vs, v.val)
}
}
return vs
}
func (m *JMap[K, V, C]) Get(key K) (V, bool) {
var none V
kh := m.comparator.Hash1(key)
for _, e := range m.store[kh] {
if m.comparator.Equals2(e.key, key) {
return e.val, true
}
}
return none, false
}
func (m *JMap[K, V, C]) Len() int {
return len(m.store)
}
func (m *JMap[K, V, C]) Delete(key K) {
kh := m.comparator.Hash1(key)
for i, e := range m.store[kh] {
if m.comparator.Equals2(e.key, key) {
m.store[kh] = append(m.store[kh][:i], m.store[kh][i+1:]...)
m.len--
return
}
}
}
func (m *JMap[K, V, C]) Clear() {
m.store = make(map[int][]*entry[K, V])
}

View File

@ -1,806 +0,0 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"fmt"
"golang.org/x/exp/slices"
"strconv"
)
// Represents {@code $} in local context prediction, which means wildcard.
// {@code//+x =//}.
// /
const (
BasePredictionContextEmptyReturnState = 0x7FFFFFFF
)
// Represents {@code $} in an array in full context mode, when {@code $}
// doesn't mean wildcard: {@code $ + x = [$,x]}. Here,
// {@code $} = {@link //EmptyReturnState}.
// /
var (
BasePredictionContextglobalNodeCount = 1
BasePredictionContextid = BasePredictionContextglobalNodeCount
)
type PredictionContext interface {
Hash() int
Equals(interface{}) bool
GetParent(int) PredictionContext
getReturnState(int) int
length() int
isEmpty() bool
hasEmptyPath() bool
String() string
}
type BasePredictionContext struct {
cachedHash int
}
func NewBasePredictionContext(cachedHash int) *BasePredictionContext {
pc := new(BasePredictionContext)
pc.cachedHash = cachedHash
return pc
}
func (b *BasePredictionContext) isEmpty() bool {
return false
}
func calculateHash(parent PredictionContext, returnState int) int {
h := murmurInit(1)
h = murmurUpdate(h, parent.Hash())
h = murmurUpdate(h, returnState)
return murmurFinish(h, 2)
}
var _emptyPredictionContextHash int
func init() {
_emptyPredictionContextHash = murmurInit(1)
_emptyPredictionContextHash = murmurFinish(_emptyPredictionContextHash, 0)
}
func calculateEmptyHash() int {
return _emptyPredictionContextHash
}
// Used to cache {@link BasePredictionContext} objects. Its used for the shared
// context cash associated with contexts in DFA states. This cache
// can be used for both lexers and parsers.
type PredictionContextCache struct {
cache map[PredictionContext]PredictionContext
}
func NewPredictionContextCache() *PredictionContextCache {
t := new(PredictionContextCache)
t.cache = make(map[PredictionContext]PredictionContext)
return t
}
// Add a context to the cache and return it. If the context already exists,
// return that one instead and do not add a Newcontext to the cache.
// Protect shared cache from unsafe thread access.
func (p *PredictionContextCache) add(ctx PredictionContext) PredictionContext {
if ctx == BasePredictionContextEMPTY {
return BasePredictionContextEMPTY
}
existing := p.cache[ctx]
if existing != nil {
return existing
}
p.cache[ctx] = ctx
return ctx
}
func (p *PredictionContextCache) Get(ctx PredictionContext) PredictionContext {
return p.cache[ctx]
}
func (p *PredictionContextCache) length() int {
return len(p.cache)
}
type SingletonPredictionContext interface {
PredictionContext
}
type BaseSingletonPredictionContext struct {
*BasePredictionContext
parentCtx PredictionContext
returnState int
}
func NewBaseSingletonPredictionContext(parent PredictionContext, returnState int) *BaseSingletonPredictionContext {
var cachedHash int
if parent != nil {
cachedHash = calculateHash(parent, returnState)
} else {
cachedHash = calculateEmptyHash()
}
s := new(BaseSingletonPredictionContext)
s.BasePredictionContext = NewBasePredictionContext(cachedHash)
s.parentCtx = parent
s.returnState = returnState
return s
}
func SingletonBasePredictionContextCreate(parent PredictionContext, returnState int) PredictionContext {
if returnState == BasePredictionContextEmptyReturnState && parent == nil {
// someone can pass in the bits of an array ctx that mean $
return BasePredictionContextEMPTY
}
return NewBaseSingletonPredictionContext(parent, returnState)
}
func (b *BaseSingletonPredictionContext) length() int {
return 1
}
func (b *BaseSingletonPredictionContext) GetParent(index int) PredictionContext {
return b.parentCtx
}
func (b *BaseSingletonPredictionContext) getReturnState(index int) int {
return b.returnState
}
func (b *BaseSingletonPredictionContext) hasEmptyPath() bool {
return b.returnState == BasePredictionContextEmptyReturnState
}
func (b *BaseSingletonPredictionContext) Hash() int {
return b.cachedHash
}
func (b *BaseSingletonPredictionContext) Equals(other interface{}) bool {
if b == other {
return true
}
if _, ok := other.(*BaseSingletonPredictionContext); !ok {
return false
}
otherP := other.(*BaseSingletonPredictionContext)
if b.returnState != otherP.getReturnState(0) {
return false
}
if b.parentCtx == nil {
return otherP.parentCtx == nil
}
return b.parentCtx.Equals(otherP.parentCtx)
}
func (b *BaseSingletonPredictionContext) String() string {
var up string
if b.parentCtx == nil {
up = ""
} else {
up = b.parentCtx.String()
}
if len(up) == 0 {
if b.returnState == BasePredictionContextEmptyReturnState {
return "$"
}
return strconv.Itoa(b.returnState)
}
return strconv.Itoa(b.returnState) + " " + up
}
var BasePredictionContextEMPTY = NewEmptyPredictionContext()
type EmptyPredictionContext struct {
*BaseSingletonPredictionContext
}
func NewEmptyPredictionContext() *EmptyPredictionContext {
p := new(EmptyPredictionContext)
p.BaseSingletonPredictionContext = NewBaseSingletonPredictionContext(nil, BasePredictionContextEmptyReturnState)
p.cachedHash = calculateEmptyHash()
return p
}
func (e *EmptyPredictionContext) isEmpty() bool {
return true
}
func (e *EmptyPredictionContext) GetParent(index int) PredictionContext {
return nil
}
func (e *EmptyPredictionContext) getReturnState(index int) int {
return e.returnState
}
func (e *EmptyPredictionContext) Hash() int {
return e.cachedHash
}
func (e *EmptyPredictionContext) Equals(other interface{}) bool {
return e == other
}
func (e *EmptyPredictionContext) String() string {
return "$"
}
type ArrayPredictionContext struct {
*BasePredictionContext
parents []PredictionContext
returnStates []int
}
func NewArrayPredictionContext(parents []PredictionContext, returnStates []int) *ArrayPredictionContext {
// Parent can be nil only if full ctx mode and we make an array
// from {@link //EMPTY} and non-empty. We merge {@link //EMPTY} by using
// nil parent and
// returnState == {@link //EmptyReturnState}.
hash := murmurInit(1)
for _, parent := range parents {
hash = murmurUpdate(hash, parent.Hash())
}
for _, returnState := range returnStates {
hash = murmurUpdate(hash, returnState)
}
hash = murmurFinish(hash, len(parents)<<1)
c := new(ArrayPredictionContext)
c.BasePredictionContext = NewBasePredictionContext(hash)
c.parents = parents
c.returnStates = returnStates
return c
}
func (a *ArrayPredictionContext) GetReturnStates() []int {
return a.returnStates
}
func (a *ArrayPredictionContext) hasEmptyPath() bool {
return a.getReturnState(a.length()-1) == BasePredictionContextEmptyReturnState
}
func (a *ArrayPredictionContext) isEmpty() bool {
// since EmptyReturnState can only appear in the last position, we
// don't need to verify that size==1
return a.returnStates[0] == BasePredictionContextEmptyReturnState
}
func (a *ArrayPredictionContext) length() int {
return len(a.returnStates)
}
func (a *ArrayPredictionContext) GetParent(index int) PredictionContext {
return a.parents[index]
}
func (a *ArrayPredictionContext) getReturnState(index int) int {
return a.returnStates[index]
}
// Equals is the default comparison function for ArrayPredictionContext when no specialized
// implementation is needed for a collection
func (a *ArrayPredictionContext) Equals(o interface{}) bool {
if a == o {
return true
}
other, ok := o.(*ArrayPredictionContext)
if !ok {
return false
}
if a.cachedHash != other.Hash() {
return false // can't be same if hash is different
}
// Must compare the actual array elements and not just the array address
//
return slices.Equal(a.returnStates, other.returnStates) &&
slices.EqualFunc(a.parents, other.parents, func(x, y PredictionContext) bool {
return x.Equals(y)
})
}
// Hash is the default hash function for ArrayPredictionContext when no specialized
// implementation is needed for a collection
func (a *ArrayPredictionContext) Hash() int {
return a.BasePredictionContext.cachedHash
}
func (a *ArrayPredictionContext) String() string {
if a.isEmpty() {
return "[]"
}
s := "["
for i := 0; i < len(a.returnStates); i++ {
if i > 0 {
s = s + ", "
}
if a.returnStates[i] == BasePredictionContextEmptyReturnState {
s = s + "$"
continue
}
s = s + strconv.Itoa(a.returnStates[i])
if a.parents[i] != nil {
s = s + " " + a.parents[i].String()
} else {
s = s + "nil"
}
}
return s + "]"
}
// Convert a {@link RuleContext} tree to a {@link BasePredictionContext} graph.
// Return {@link //EMPTY} if {@code outerContext} is empty or nil.
// /
func predictionContextFromRuleContext(a *ATN, outerContext RuleContext) PredictionContext {
if outerContext == nil {
outerContext = ParserRuleContextEmpty
}
// if we are in RuleContext of start rule, s, then BasePredictionContext
// is EMPTY. Nobody called us. (if we are empty, return empty)
if outerContext.GetParent() == nil || outerContext == ParserRuleContextEmpty {
return BasePredictionContextEMPTY
}
// If we have a parent, convert it to a BasePredictionContext graph
parent := predictionContextFromRuleContext(a, outerContext.GetParent().(RuleContext))
state := a.states[outerContext.GetInvokingState()]
transition := state.GetTransitions()[0]
return SingletonBasePredictionContextCreate(parent, transition.(*RuleTransition).followState.GetStateNumber())
}
func merge(a, b PredictionContext, rootIsWildcard bool, mergeCache *DoubleDict) PredictionContext {
// Share same graph if both same
//
if a == b || a.Equals(b) {
return a
}
// In Java, EmptyPredictionContext inherits from SingletonPredictionContext, and so the test
// in java for SingletonPredictionContext will succeed and a new ArrayPredictionContext will be created
// from it.
// In go, EmptyPredictionContext does not equate to SingletonPredictionContext and so that conversion
// will fail. We need to test for both Empty and Singleton and create an ArrayPredictionContext from
// either of them.
ac, ok1 := a.(*BaseSingletonPredictionContext)
bc, ok2 := b.(*BaseSingletonPredictionContext)
if ok1 && ok2 {
return mergeSingletons(ac, bc, rootIsWildcard, mergeCache)
}
// At least one of a or b is array
// If one is $ and rootIsWildcard, return $ as// wildcard
if rootIsWildcard {
if _, ok := a.(*EmptyPredictionContext); ok {
return a
}
if _, ok := b.(*EmptyPredictionContext); ok {
return b
}
}
// Convert Singleton or Empty so both are arrays to normalize - We should not use the existing parameters
// here.
//
// TODO: I think that maybe the Prediction Context structs should be redone as there is a chance we will see this mess again - maybe redo the logic here
var arp, arb *ArrayPredictionContext
var ok bool
if arp, ok = a.(*ArrayPredictionContext); ok {
} else if _, ok = a.(*BaseSingletonPredictionContext); ok {
arp = NewArrayPredictionContext([]PredictionContext{a.GetParent(0)}, []int{a.getReturnState(0)})
} else if _, ok = a.(*EmptyPredictionContext); ok {
arp = NewArrayPredictionContext([]PredictionContext{}, []int{})
}
if arb, ok = b.(*ArrayPredictionContext); ok {
} else if _, ok = b.(*BaseSingletonPredictionContext); ok {
arb = NewArrayPredictionContext([]PredictionContext{b.GetParent(0)}, []int{b.getReturnState(0)})
} else if _, ok = b.(*EmptyPredictionContext); ok {
arb = NewArrayPredictionContext([]PredictionContext{}, []int{})
}
// Both arp and arb
return mergeArrays(arp, arb, rootIsWildcard, mergeCache)
}
// Merge two {@link SingletonBasePredictionContext} instances.
//
// <p>Stack tops equal, parents merge is same return left graph.<br>
// <embed src="images/SingletonMerge_SameRootSamePar.svg"
// type="image/svg+xml"/></p>
//
// <p>Same stack top, parents differ merge parents giving array node, then
// remainders of those graphs. A Newroot node is created to point to the
// merged parents.<br>
// <embed src="images/SingletonMerge_SameRootDiffPar.svg"
// type="image/svg+xml"/></p>
//
// <p>Different stack tops pointing to same parent. Make array node for the
// root where both element in the root point to the same (original)
// parent.<br>
// <embed src="images/SingletonMerge_DiffRootSamePar.svg"
// type="image/svg+xml"/></p>
//
// <p>Different stack tops pointing to different parents. Make array node for
// the root where each element points to the corresponding original
// parent.<br>
// <embed src="images/SingletonMerge_DiffRootDiffPar.svg"
// type="image/svg+xml"/></p>
//
// @param a the first {@link SingletonBasePredictionContext}
// @param b the second {@link SingletonBasePredictionContext}
// @param rootIsWildcard {@code true} if this is a local-context merge,
// otherwise false to indicate a full-context merge
// @param mergeCache
// /
func mergeSingletons(a, b *BaseSingletonPredictionContext, rootIsWildcard bool, mergeCache *DoubleDict) PredictionContext {
if mergeCache != nil {
previous := mergeCache.Get(a.Hash(), b.Hash())
if previous != nil {
return previous.(PredictionContext)
}
previous = mergeCache.Get(b.Hash(), a.Hash())
if previous != nil {
return previous.(PredictionContext)
}
}
rootMerge := mergeRoot(a, b, rootIsWildcard)
if rootMerge != nil {
if mergeCache != nil {
mergeCache.set(a.Hash(), b.Hash(), rootMerge)
}
return rootMerge
}
if a.returnState == b.returnState {
parent := merge(a.parentCtx, b.parentCtx, rootIsWildcard, mergeCache)
// if parent is same as existing a or b parent or reduced to a parent,
// return it
if parent == a.parentCtx {
return a // ax + bx = ax, if a=b
}
if parent == b.parentCtx {
return b // ax + bx = bx, if a=b
}
// else: ax + ay = a'[x,y]
// merge parents x and y, giving array node with x,y then remainders
// of those graphs. dup a, a' points at merged array
// Newjoined parent so create Newsingleton pointing to it, a'
spc := SingletonBasePredictionContextCreate(parent, a.returnState)
if mergeCache != nil {
mergeCache.set(a.Hash(), b.Hash(), spc)
}
return spc
}
// a != b payloads differ
// see if we can collapse parents due to $+x parents if local ctx
var singleParent PredictionContext
if a == b || (a.parentCtx != nil && a.parentCtx == b.parentCtx) { // ax +
// bx =
// [a,b]x
singleParent = a.parentCtx
}
if singleParent != nil { // parents are same
// sort payloads and use same parent
payloads := []int{a.returnState, b.returnState}
if a.returnState > b.returnState {
payloads[0] = b.returnState
payloads[1] = a.returnState
}
parents := []PredictionContext{singleParent, singleParent}
apc := NewArrayPredictionContext(parents, payloads)
if mergeCache != nil {
mergeCache.set(a.Hash(), b.Hash(), apc)
}
return apc
}
// parents differ and can't merge them. Just pack together
// into array can't merge.
// ax + by = [ax,by]
payloads := []int{a.returnState, b.returnState}
parents := []PredictionContext{a.parentCtx, b.parentCtx}
if a.returnState > b.returnState { // sort by payload
payloads[0] = b.returnState
payloads[1] = a.returnState
parents = []PredictionContext{b.parentCtx, a.parentCtx}
}
apc := NewArrayPredictionContext(parents, payloads)
if mergeCache != nil {
mergeCache.set(a.Hash(), b.Hash(), apc)
}
return apc
}
// Handle case where at least one of {@code a} or {@code b} is
// {@link //EMPTY}. In the following diagrams, the symbol {@code $} is used
// to represent {@link //EMPTY}.
//
// <h2>Local-Context Merges</h2>
//
// <p>These local-context merge operations are used when {@code rootIsWildcard}
// is true.</p>
//
// <p>{@link //EMPTY} is superset of any graph return {@link //EMPTY}.<br>
// <embed src="images/LocalMerge_EmptyRoot.svg" type="image/svg+xml"/></p>
//
// <p>{@link //EMPTY} and anything is {@code //EMPTY}, so merged parent is
// {@code //EMPTY} return left graph.<br>
// <embed src="images/LocalMerge_EmptyParent.svg" type="image/svg+xml"/></p>
//
// <p>Special case of last merge if local context.<br>
// <embed src="images/LocalMerge_DiffRoots.svg" type="image/svg+xml"/></p>
//
// <h2>Full-Context Merges</h2>
//
// <p>These full-context merge operations are used when {@code rootIsWildcard}
// is false.</p>
//
// <p><embed src="images/FullMerge_EmptyRoots.svg" type="image/svg+xml"/></p>
//
// <p>Must keep all contexts {@link //EMPTY} in array is a special value (and
// nil parent).<br>
// <embed src="images/FullMerge_EmptyRoot.svg" type="image/svg+xml"/></p>
//
// <p><embed src="images/FullMerge_SameRoot.svg" type="image/svg+xml"/></p>
//
// @param a the first {@link SingletonBasePredictionContext}
// @param b the second {@link SingletonBasePredictionContext}
// @param rootIsWildcard {@code true} if this is a local-context merge,
// otherwise false to indicate a full-context merge
// /
func mergeRoot(a, b SingletonPredictionContext, rootIsWildcard bool) PredictionContext {
if rootIsWildcard {
if a == BasePredictionContextEMPTY {
return BasePredictionContextEMPTY // // + b =//
}
if b == BasePredictionContextEMPTY {
return BasePredictionContextEMPTY // a +// =//
}
} else {
if a == BasePredictionContextEMPTY && b == BasePredictionContextEMPTY {
return BasePredictionContextEMPTY // $ + $ = $
} else if a == BasePredictionContextEMPTY { // $ + x = [$,x]
payloads := []int{b.getReturnState(-1), BasePredictionContextEmptyReturnState}
parents := []PredictionContext{b.GetParent(-1), nil}
return NewArrayPredictionContext(parents, payloads)
} else if b == BasePredictionContextEMPTY { // x + $ = [$,x] ($ is always first if present)
payloads := []int{a.getReturnState(-1), BasePredictionContextEmptyReturnState}
parents := []PredictionContext{a.GetParent(-1), nil}
return NewArrayPredictionContext(parents, payloads)
}
}
return nil
}
// Merge two {@link ArrayBasePredictionContext} instances.
//
// <p>Different tops, different parents.<br>
// <embed src="images/ArrayMerge_DiffTopDiffPar.svg" type="image/svg+xml"/></p>
//
// <p>Shared top, same parents.<br>
// <embed src="images/ArrayMerge_ShareTopSamePar.svg" type="image/svg+xml"/></p>
//
// <p>Shared top, different parents.<br>
// <embed src="images/ArrayMerge_ShareTopDiffPar.svg" type="image/svg+xml"/></p>
//
// <p>Shared top, all shared parents.<br>
// <embed src="images/ArrayMerge_ShareTopSharePar.svg"
// type="image/svg+xml"/></p>
//
// <p>Equal tops, merge parents and reduce top to
// {@link SingletonBasePredictionContext}.<br>
// <embed src="images/ArrayMerge_EqualTop.svg" type="image/svg+xml"/></p>
// /
func mergeArrays(a, b *ArrayPredictionContext, rootIsWildcard bool, mergeCache *DoubleDict) PredictionContext {
if mergeCache != nil {
previous := mergeCache.Get(a.Hash(), b.Hash())
if previous != nil {
if ParserATNSimulatorTraceATNSim {
fmt.Println("mergeArrays a=" + a.String() + ",b=" + b.String() + " -> previous")
}
return previous.(PredictionContext)
}
previous = mergeCache.Get(b.Hash(), a.Hash())
if previous != nil {
if ParserATNSimulatorTraceATNSim {
fmt.Println("mergeArrays a=" + a.String() + ",b=" + b.String() + " -> previous")
}
return previous.(PredictionContext)
}
}
// merge sorted payloads a + b => M
i := 0 // walks a
j := 0 // walks b
k := 0 // walks target M array
mergedReturnStates := make([]int, len(a.returnStates)+len(b.returnStates))
mergedParents := make([]PredictionContext, len(a.returnStates)+len(b.returnStates))
// walk and merge to yield mergedParents, mergedReturnStates
for i < len(a.returnStates) && j < len(b.returnStates) {
aParent := a.parents[i]
bParent := b.parents[j]
if a.returnStates[i] == b.returnStates[j] {
// same payload (stack tops are equal), must yield merged singleton
payload := a.returnStates[i]
// $+$ = $
bothDollars := payload == BasePredictionContextEmptyReturnState && aParent == nil && bParent == nil
axAX := aParent != nil && bParent != nil && aParent == bParent // ax+ax
// ->
// ax
if bothDollars || axAX {
mergedParents[k] = aParent // choose left
mergedReturnStates[k] = payload
} else { // ax+ay -> a'[x,y]
mergedParent := merge(aParent, bParent, rootIsWildcard, mergeCache)
mergedParents[k] = mergedParent
mergedReturnStates[k] = payload
}
i++ // hop over left one as usual
j++ // but also Skip one in right side since we merge
} else if a.returnStates[i] < b.returnStates[j] { // copy a[i] to M
mergedParents[k] = aParent
mergedReturnStates[k] = a.returnStates[i]
i++
} else { // b > a, copy b[j] to M
mergedParents[k] = bParent
mergedReturnStates[k] = b.returnStates[j]
j++
}
k++
}
// copy over any payloads remaining in either array
if i < len(a.returnStates) {
for p := i; p < len(a.returnStates); p++ {
mergedParents[k] = a.parents[p]
mergedReturnStates[k] = a.returnStates[p]
k++
}
} else {
for p := j; p < len(b.returnStates); p++ {
mergedParents[k] = b.parents[p]
mergedReturnStates[k] = b.returnStates[p]
k++
}
}
// trim merged if we combined a few that had same stack tops
if k < len(mergedParents) { // write index < last position trim
if k == 1 { // for just one merged element, return singleton top
pc := SingletonBasePredictionContextCreate(mergedParents[0], mergedReturnStates[0])
if mergeCache != nil {
mergeCache.set(a.Hash(), b.Hash(), pc)
}
return pc
}
mergedParents = mergedParents[0:k]
mergedReturnStates = mergedReturnStates[0:k]
}
M := NewArrayPredictionContext(mergedParents, mergedReturnStates)
// if we created same array as a or b, return that instead
// TODO: track whether this is possible above during merge sort for speed
// TODO: In go, I do not think we can just do M == xx as M is a brand new allocation. This could be causing allocation problems
if M == a {
if mergeCache != nil {
mergeCache.set(a.Hash(), b.Hash(), a)
}
if ParserATNSimulatorTraceATNSim {
fmt.Println("mergeArrays a=" + a.String() + ",b=" + b.String() + " -> a")
}
return a
}
if M == b {
if mergeCache != nil {
mergeCache.set(a.Hash(), b.Hash(), b)
}
if ParserATNSimulatorTraceATNSim {
fmt.Println("mergeArrays a=" + a.String() + ",b=" + b.String() + " -> b")
}
return b
}
combineCommonParents(mergedParents)
if mergeCache != nil {
mergeCache.set(a.Hash(), b.Hash(), M)
}
if ParserATNSimulatorTraceATNSim {
fmt.Println("mergeArrays a=" + a.String() + ",b=" + b.String() + " -> " + M.String())
}
return M
}
// Make pass over all <em>M</em> {@code parents} merge any {@code equals()}
// ones.
// /
func combineCommonParents(parents []PredictionContext) {
uniqueParents := make(map[PredictionContext]PredictionContext)
for p := 0; p < len(parents); p++ {
parent := parents[p]
if uniqueParents[parent] == nil {
uniqueParents[parent] = parent
}
}
for q := 0; q < len(parents); q++ {
parents[q] = uniqueParents[parents[q]]
}
}
func getCachedBasePredictionContext(context PredictionContext, contextCache *PredictionContextCache, visited map[PredictionContext]PredictionContext) PredictionContext {
if context.isEmpty() {
return context
}
existing := visited[context]
if existing != nil {
return existing
}
existing = contextCache.Get(context)
if existing != nil {
visited[context] = existing
return existing
}
changed := false
parents := make([]PredictionContext, context.length())
for i := 0; i < len(parents); i++ {
parent := getCachedBasePredictionContext(context.GetParent(i), contextCache, visited)
if changed || parent != context.GetParent(i) {
if !changed {
parents = make([]PredictionContext, context.length())
for j := 0; j < context.length(); j++ {
parents[j] = context.GetParent(j)
}
changed = true
}
parents[i] = parent
}
}
if !changed {
contextCache.add(context)
visited[context] = context
return context
}
var updated PredictionContext
if len(parents) == 0 {
updated = BasePredictionContextEMPTY
} else if len(parents) == 1 {
updated = SingletonBasePredictionContextCreate(parents[0], context.getReturnState(0))
} else {
updated = NewArrayPredictionContext(parents, context.(*ArrayPredictionContext).GetReturnStates())
}
contextCache.add(updated)
visited[updated] = updated
visited[context] = updated
return updated
}

View File

@ -1,529 +0,0 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
// This enumeration defines the prediction modes available in ANTLR 4 along with
// utility methods for analyzing configuration sets for conflicts and/or
// ambiguities.
const (
//
// The SLL(*) prediction mode. This prediction mode ignores the current
// parser context when making predictions. This is the fastest prediction
// mode, and provides correct results for many grammars. This prediction
// mode is more powerful than the prediction mode provided by ANTLR 3, but
// may result in syntax errors for grammar and input combinations which are
// not SLL.
//
// <p>
// When using this prediction mode, the parser will either return a correct
// parse tree (i.e. the same parse tree that would be returned with the
// {@link //LL} prediction mode), or it will Report a syntax error. If a
// syntax error is encountered when using the {@link //SLL} prediction mode,
// it may be due to either an actual syntax error in the input or indicate
// that the particular combination of grammar and input requires the more
// powerful {@link //LL} prediction abilities to complete successfully.</p>
//
// <p>
// This prediction mode does not provide any guarantees for prediction
// behavior for syntactically-incorrect inputs.</p>
//
PredictionModeSLL = 0
//
// The LL(*) prediction mode. This prediction mode allows the current parser
// context to be used for resolving SLL conflicts that occur during
// prediction. This is the fastest prediction mode that guarantees correct
// parse results for all combinations of grammars with syntactically correct
// inputs.
//
// <p>
// When using this prediction mode, the parser will make correct decisions
// for all syntactically-correct grammar and input combinations. However, in
// cases where the grammar is truly ambiguous this prediction mode might not
// Report a precise answer for <em>exactly which</em> alternatives are
// ambiguous.</p>
//
// <p>
// This prediction mode does not provide any guarantees for prediction
// behavior for syntactically-incorrect inputs.</p>
//
PredictionModeLL = 1
//
// The LL(*) prediction mode with exact ambiguity detection. In addition to
// the correctness guarantees provided by the {@link //LL} prediction mode,
// this prediction mode instructs the prediction algorithm to determine the
// complete and exact set of ambiguous alternatives for every ambiguous
// decision encountered while parsing.
//
// <p>
// This prediction mode may be used for diagnosing ambiguities during
// grammar development. Due to the performance overhead of calculating sets
// of ambiguous alternatives, this prediction mode should be avoided when
// the exact results are not necessary.</p>
//
// <p>
// This prediction mode does not provide any guarantees for prediction
// behavior for syntactically-incorrect inputs.</p>
//
PredictionModeLLExactAmbigDetection = 2
)
// Computes the SLL prediction termination condition.
//
// <p>
// This method computes the SLL prediction termination condition for both of
// the following cases.</p>
//
// <ul>
// <li>The usual SLL+LL fallback upon SLL conflict</li>
// <li>Pure SLL without LL fallback</li>
// </ul>
//
// <p><strong>COMBINED SLL+LL PARSING</strong></p>
//
// <p>When LL-fallback is enabled upon SLL conflict, correct predictions are
// ensured regardless of how the termination condition is computed by this
// method. Due to the substantially higher cost of LL prediction, the
// prediction should only fall back to LL when the additional lookahead
// cannot lead to a unique SLL prediction.</p>
//
// <p>Assuming combined SLL+LL parsing, an SLL configuration set with only
// conflicting subsets should fall back to full LL, even if the
// configuration sets don't resolve to the same alternative (e.g.
// {@code {1,2}} and {@code {3,4}}. If there is at least one non-conflicting
// configuration, SLL could continue with the hopes that more lookahead will
// resolve via one of those non-conflicting configurations.</p>
//
// <p>Here's the prediction termination rule them: SLL (for SLL+LL parsing)
// stops when it sees only conflicting configuration subsets. In contrast,
// full LL keeps going when there is uncertainty.</p>
//
// <p><strong>HEURISTIC</strong></p>
//
// <p>As a heuristic, we stop prediction when we see any conflicting subset
// unless we see a state that only has one alternative associated with it.
// The single-alt-state thing lets prediction continue upon rules like
// (otherwise, it would admit defeat too soon):</p>
//
// <p>{@code [12|1|[], 6|2|[], 12|2|[]]. s : (ID | ID ID?) ” }</p>
//
// <p>When the ATN simulation reaches the state before {@code ”}, it has a
// DFA state that looks like: {@code [12|1|[], 6|2|[], 12|2|[]]}. Naturally
// {@code 12|1|[]} and {@code 12|2|[]} conflict, but we cannot stop
// processing this node because alternative to has another way to continue,
// via {@code [6|2|[]]}.</p>
//
// <p>It also let's us continue for this rule:</p>
//
// <p>{@code [1|1|[], 1|2|[], 8|3|[]] a : A | A | A B }</p>
//
// <p>After Matching input A, we reach the stop state for rule A, state 1.
// State 8 is the state right before B. Clearly alternatives 1 and 2
// conflict and no amount of further lookahead will separate the two.
// However, alternative 3 will be able to continue and so we do not stop
// working on this state. In the previous example, we're concerned with
// states associated with the conflicting alternatives. Here alt 3 is not
// associated with the conflicting configs, but since we can continue
// looking for input reasonably, don't declare the state done.</p>
//
// <p><strong>PURE SLL PARSING</strong></p>
//
// <p>To handle pure SLL parsing, all we have to do is make sure that we
// combine stack contexts for configurations that differ only by semantic
// predicate. From there, we can do the usual SLL termination heuristic.</p>
//
// <p><strong>PREDICATES IN SLL+LL PARSING</strong></p>
//
// <p>SLL decisions don't evaluate predicates until after they reach DFA stop
// states because they need to create the DFA cache that works in all
// semantic situations. In contrast, full LL evaluates predicates collected
// during start state computation so it can ignore predicates thereafter.
// This means that SLL termination detection can totally ignore semantic
// predicates.</p>
//
// <p>Implementation-wise, {@link ATNConfigSet} combines stack contexts but not
// semantic predicate contexts so we might see two configurations like the
// following.</p>
//
// <p>{@code (s, 1, x, {}), (s, 1, x', {p})}</p>
//
// <p>Before testing these configurations against others, we have to merge
// {@code x} and {@code x'} (without modifying the existing configurations).
// For example, we test {@code (x+x')==x”} when looking for conflicts in
// the following configurations.</p>
//
// <p>{@code (s, 1, x, {}), (s, 1, x', {p}), (s, 2, x”, {})}</p>
//
// <p>If the configuration set has predicates (as indicated by
// {@link ATNConfigSet//hasSemanticContext}), this algorithm makes a copy of
// the configurations to strip out all of the predicates so that a standard
// {@link ATNConfigSet} will merge everything ignoring predicates.</p>
func PredictionModehasSLLConflictTerminatingPrediction(mode int, configs ATNConfigSet) bool {
// Configs in rule stop states indicate reaching the end of the decision
// rule (local context) or end of start rule (full context). If all
// configs meet this condition, then none of the configurations is able
// to Match additional input so we terminate prediction.
//
if PredictionModeallConfigsInRuleStopStates(configs) {
return true
}
// pure SLL mode parsing
if mode == PredictionModeSLL {
// Don't bother with combining configs from different semantic
// contexts if we can fail over to full LL costs more time
// since we'll often fail over anyway.
if configs.HasSemanticContext() {
// dup configs, tossing out semantic predicates
dup := NewBaseATNConfigSet(false)
for _, c := range configs.GetItems() {
// NewBaseATNConfig({semanticContext:}, c)
c = NewBaseATNConfig2(c, SemanticContextNone)
dup.Add(c, nil)
}
configs = dup
}
// now we have combined contexts for configs with dissimilar preds
}
// pure SLL or combined SLL+LL mode parsing
altsets := PredictionModegetConflictingAltSubsets(configs)
return PredictionModehasConflictingAltSet(altsets) && !PredictionModehasStateAssociatedWithOneAlt(configs)
}
// Checks if any configuration in {@code configs} is in a
// {@link RuleStopState}. Configurations meeting this condition have reached
// the end of the decision rule (local context) or end of start rule (full
// context).
//
// @param configs the configuration set to test
// @return {@code true} if any configuration in {@code configs} is in a
// {@link RuleStopState}, otherwise {@code false}
func PredictionModehasConfigInRuleStopState(configs ATNConfigSet) bool {
for _, c := range configs.GetItems() {
if _, ok := c.GetState().(*RuleStopState); ok {
return true
}
}
return false
}
// Checks if all configurations in {@code configs} are in a
// {@link RuleStopState}. Configurations meeting this condition have reached
// the end of the decision rule (local context) or end of start rule (full
// context).
//
// @param configs the configuration set to test
// @return {@code true} if all configurations in {@code configs} are in a
// {@link RuleStopState}, otherwise {@code false}
func PredictionModeallConfigsInRuleStopStates(configs ATNConfigSet) bool {
for _, c := range configs.GetItems() {
if _, ok := c.GetState().(*RuleStopState); !ok {
return false
}
}
return true
}
// Full LL prediction termination.
//
// <p>Can we stop looking ahead during ATN simulation or is there some
// uncertainty as to which alternative we will ultimately pick, after
// consuming more input? Even if there are partial conflicts, we might know
// that everything is going to resolve to the same minimum alternative. That
// means we can stop since no more lookahead will change that fact. On the
// other hand, there might be multiple conflicts that resolve to different
// minimums. That means we need more look ahead to decide which of those
// alternatives we should predict.</p>
//
// <p>The basic idea is to split the set of configurations {@code C}, into
// conflicting subsets {@code (s, _, ctx, _)} and singleton subsets with
// non-conflicting configurations. Two configurations conflict if they have
// identical {@link ATNConfig//state} and {@link ATNConfig//context} values
// but different {@link ATNConfig//alt} value, e.g. {@code (s, i, ctx, _)}
// and {@code (s, j, ctx, _)} for {@code i!=j}.</p>
//
// <p>Reduce these configuration subsets to the set of possible alternatives.
// You can compute the alternative subsets in one pass as follows:</p>
//
// <p>{@code A_s,ctx = {i | (s, i, ctx, _)}} for each configuration in
// {@code C} holding {@code s} and {@code ctx} fixed.</p>
//
// <p>Or in pseudo-code, for each configuration {@code c} in {@code C}:</p>
//
// <pre>
// map[c] U= c.{@link ATNConfig//alt alt} // map hash/equals uses s and x, not
// alt and not pred
// </pre>
//
// <p>The values in {@code map} are the set of {@code A_s,ctx} sets.</p>
//
// <p>If {@code |A_s,ctx|=1} then there is no conflict associated with
// {@code s} and {@code ctx}.</p>
//
// <p>Reduce the subsets to singletons by choosing a minimum of each subset. If
// the union of these alternative subsets is a singleton, then no amount of
// more lookahead will help us. We will always pick that alternative. If,
// however, there is more than one alternative, then we are uncertain which
// alternative to predict and must continue looking for resolution. We may
// or may not discover an ambiguity in the future, even if there are no
// conflicting subsets this round.</p>
//
// <p>The biggest sin is to terminate early because it means we've made a
// decision but were uncertain as to the eventual outcome. We haven't used
// enough lookahead. On the other hand, announcing a conflict too late is no
// big deal you will still have the conflict. It's just inefficient. It
// might even look until the end of file.</p>
//
// <p>No special consideration for semantic predicates is required because
// predicates are evaluated on-the-fly for full LL prediction, ensuring that
// no configuration contains a semantic context during the termination
// check.</p>
//
// <p><strong>CONFLICTING CONFIGS</strong></p>
//
// <p>Two configurations {@code (s, i, x)} and {@code (s, j, x')}, conflict
// when {@code i!=j} but {@code x=x'}. Because we merge all
// {@code (s, i, _)} configurations together, that means that there are at
// most {@code n} configurations associated with state {@code s} for
// {@code n} possible alternatives in the decision. The merged stacks
// complicate the comparison of configuration contexts {@code x} and
// {@code x'}. Sam checks to see if one is a subset of the other by calling
// merge and checking to see if the merged result is either {@code x} or
// {@code x'}. If the {@code x} associated with lowest alternative {@code i}
// is the superset, then {@code i} is the only possible prediction since the
// others resolve to {@code min(i)} as well. However, if {@code x} is
// associated with {@code j>i} then at least one stack configuration for
// {@code j} is not in conflict with alternative {@code i}. The algorithm
// should keep going, looking for more lookahead due to the uncertainty.</p>
//
// <p>For simplicity, I'm doing a equality check between {@code x} and
// {@code x'} that lets the algorithm continue to consume lookahead longer
// than necessary. The reason I like the equality is of course the
// simplicity but also because that is the test you need to detect the
// alternatives that are actually in conflict.</p>
//
// <p><strong>CONTINUE/STOP RULE</strong></p>
//
// <p>Continue if union of resolved alternative sets from non-conflicting and
// conflicting alternative subsets has more than one alternative. We are
// uncertain about which alternative to predict.</p>
//
// <p>The complete set of alternatives, {@code [i for (_,i,_)]}, tells us which
// alternatives are still in the running for the amount of input we've
// consumed at this point. The conflicting sets let us to strip away
// configurations that won't lead to more states because we resolve
// conflicts to the configuration with a minimum alternate for the
// conflicting set.</p>
//
// <p><strong>CASES</strong></p>
//
// <ul>
//
// <li>no conflicts and more than 1 alternative in set =&gt continue</li>
//
// <li> {@code (s, 1, x)}, {@code (s, 2, x)}, {@code (s, 3, z)},
// {@code (s', 1, y)}, {@code (s', 2, y)} yields non-conflicting set
// {@code {3}} U conflicting sets {@code min({1,2})} U {@code min({1,2})} =
// {@code {1,3}} =&gt continue
// </li>
//
// <li>{@code (s, 1, x)}, {@code (s, 2, x)}, {@code (s', 1, y)},
// {@code (s', 2, y)}, {@code (s”, 1, z)} yields non-conflicting set
// {@code {1}} U conflicting sets {@code min({1,2})} U {@code min({1,2})} =
// {@code {1}} =&gt stop and predict 1</li>
//
// <li>{@code (s, 1, x)}, {@code (s, 2, x)}, {@code (s', 1, y)},
// {@code (s', 2, y)} yields conflicting, reduced sets {@code {1}} U
// {@code {1}} = {@code {1}} =&gt stop and predict 1, can announce
// ambiguity {@code {1,2}}</li>
//
// <li>{@code (s, 1, x)}, {@code (s, 2, x)}, {@code (s', 2, y)},
// {@code (s', 3, y)} yields conflicting, reduced sets {@code {1}} U
// {@code {2}} = {@code {1,2}} =&gt continue</li>
//
// <li>{@code (s, 1, x)}, {@code (s, 2, x)}, {@code (s', 3, y)},
// {@code (s', 4, y)} yields conflicting, reduced sets {@code {1}} U
// {@code {3}} = {@code {1,3}} =&gt continue</li>
//
// </ul>
//
// <p><strong>EXACT AMBIGUITY DETECTION</strong></p>
//
// <p>If all states Report the same conflicting set of alternatives, then we
// know we have the exact ambiguity set.</p>
//
// <p><code>|A_<em>i</em>|&gt1</code> and
// <code>A_<em>i</em> = A_<em>j</em></code> for all <em>i</em>, <em>j</em>.</p>
//
// <p>In other words, we continue examining lookahead until all {@code A_i}
// have more than one alternative and all {@code A_i} are the same. If
// {@code A={{1,2}, {1,3}}}, then regular LL prediction would terminate
// because the resolved set is {@code {1}}. To determine what the real
// ambiguity is, we have to know whether the ambiguity is between one and
// two or one and three so we keep going. We can only stop prediction when
// we need exact ambiguity detection when the sets look like
// {@code A={{1,2}}} or {@code {{1,2},{1,2}}}, etc...</p>
func PredictionModeresolvesToJustOneViableAlt(altsets []*BitSet) int {
return PredictionModegetSingleViableAlt(altsets)
}
// Determines if every alternative subset in {@code altsets} contains more
// than one alternative.
//
// @param altsets a collection of alternative subsets
// @return {@code true} if every {@link BitSet} in {@code altsets} has
// {@link BitSet//cardinality cardinality} &gt 1, otherwise {@code false}
func PredictionModeallSubsetsConflict(altsets []*BitSet) bool {
return !PredictionModehasNonConflictingAltSet(altsets)
}
// Determines if any single alternative subset in {@code altsets} contains
// exactly one alternative.
//
// @param altsets a collection of alternative subsets
// @return {@code true} if {@code altsets} contains a {@link BitSet} with
// {@link BitSet//cardinality cardinality} 1, otherwise {@code false}
func PredictionModehasNonConflictingAltSet(altsets []*BitSet) bool {
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
if alts.length() == 1 {
return true
}
}
return false
}
// Determines if any single alternative subset in {@code altsets} contains
// more than one alternative.
//
// @param altsets a collection of alternative subsets
// @return {@code true} if {@code altsets} contains a {@link BitSet} with
// {@link BitSet//cardinality cardinality} &gt 1, otherwise {@code false}
func PredictionModehasConflictingAltSet(altsets []*BitSet) bool {
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
if alts.length() > 1 {
return true
}
}
return false
}
// Determines if every alternative subset in {@code altsets} is equivalent.
//
// @param altsets a collection of alternative subsets
// @return {@code true} if every member of {@code altsets} is equal to the
// others, otherwise {@code false}
func PredictionModeallSubsetsEqual(altsets []*BitSet) bool {
var first *BitSet
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
if first == nil {
first = alts
} else if alts != first {
return false
}
}
return true
}
// Returns the unique alternative predicted by all alternative subsets in
// {@code altsets}. If no such alternative exists, this method returns
// {@link ATN//INVALID_ALT_NUMBER}.
//
// @param altsets a collection of alternative subsets
func PredictionModegetUniqueAlt(altsets []*BitSet) int {
all := PredictionModeGetAlts(altsets)
if all.length() == 1 {
return all.minValue()
}
return ATNInvalidAltNumber
}
// Gets the complete set of represented alternatives for a collection of
// alternative subsets. This method returns the union of each {@link BitSet}
// in {@code altsets}.
//
// @param altsets a collection of alternative subsets
// @return the set of represented alternatives in {@code altsets}
func PredictionModeGetAlts(altsets []*BitSet) *BitSet {
all := NewBitSet()
for _, alts := range altsets {
all.or(alts)
}
return all
}
// PredictionModegetConflictingAltSubsets gets the conflicting alt subsets from a configuration set.
// For each configuration {@code c} in {@code configs}:
//
// <pre>
// map[c] U= c.{@link ATNConfig//alt alt} // map hash/equals uses s and x, not
// alt and not pred
// </pre>
func PredictionModegetConflictingAltSubsets(configs ATNConfigSet) []*BitSet {
configToAlts := NewJMap[ATNConfig, *BitSet, *ATNAltConfigComparator[ATNConfig]](atnAltCfgEqInst)
for _, c := range configs.GetItems() {
alts, ok := configToAlts.Get(c)
if !ok {
alts = NewBitSet()
configToAlts.Put(c, alts)
}
alts.add(c.GetAlt())
}
return configToAlts.Values()
}
// PredictionModeGetStateToAltMap gets a map from state to alt subset from a configuration set. For each
// configuration {@code c} in {@code configs}:
//
// <pre>
// map[c.{@link ATNConfig//state state}] U= c.{@link ATNConfig//alt alt}
// </pre>
func PredictionModeGetStateToAltMap(configs ATNConfigSet) *AltDict {
m := NewAltDict()
for _, c := range configs.GetItems() {
alts := m.Get(c.GetState().String())
if alts == nil {
alts = NewBitSet()
m.put(c.GetState().String(), alts)
}
alts.(*BitSet).add(c.GetAlt())
}
return m
}
func PredictionModehasStateAssociatedWithOneAlt(configs ATNConfigSet) bool {
values := PredictionModeGetStateToAltMap(configs).values()
for i := 0; i < len(values); i++ {
if values[i].(*BitSet).length() == 1 {
return true
}
}
return false
}
func PredictionModegetSingleViableAlt(altsets []*BitSet) int {
result := ATNInvalidAltNumber
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
minAlt := alts.minValue()
if result == ATNInvalidAltNumber {
result = minAlt
} else if result != minAlt { // more than 1 viable alt
return ATNInvalidAltNumber
}
}
return result
}

View File

@ -1,114 +0,0 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
// A rule context is a record of a single rule invocation. It knows
// which context invoked it, if any. If there is no parent context, then
// naturally the invoking state is not valid. The parent link
// provides a chain upwards from the current rule invocation to the root
// of the invocation tree, forming a stack. We actually carry no
// information about the rule associated with b context (except
// when parsing). We keep only the state number of the invoking state from
// the ATN submachine that invoked b. Contrast b with the s
// pointer inside ParserRuleContext that tracks the current state
// being "executed" for the current rule.
//
// The parent contexts are useful for computing lookahead sets and
// getting error information.
//
// These objects are used during parsing and prediction.
// For the special case of parsers, we use the subclass
// ParserRuleContext.
//
// @see ParserRuleContext
//
type RuleContext interface {
RuleNode
GetInvokingState() int
SetInvokingState(int)
GetRuleIndex() int
IsEmpty() bool
GetAltNumber() int
SetAltNumber(altNumber int)
String([]string, RuleContext) string
}
type BaseRuleContext struct {
parentCtx RuleContext
invokingState int
RuleIndex int
}
func NewBaseRuleContext(parent RuleContext, invokingState int) *BaseRuleContext {
rn := new(BaseRuleContext)
// What context invoked b rule?
rn.parentCtx = parent
// What state invoked the rule associated with b context?
// The "return address" is the followState of invokingState
// If parent is nil, b should be -1.
if parent == nil {
rn.invokingState = -1
} else {
rn.invokingState = invokingState
}
return rn
}
func (b *BaseRuleContext) GetBaseRuleContext() *BaseRuleContext {
return b
}
func (b *BaseRuleContext) SetParent(v Tree) {
if v == nil {
b.parentCtx = nil
} else {
b.parentCtx = v.(RuleContext)
}
}
func (b *BaseRuleContext) GetInvokingState() int {
return b.invokingState
}
func (b *BaseRuleContext) SetInvokingState(t int) {
b.invokingState = t
}
func (b *BaseRuleContext) GetRuleIndex() int {
return b.RuleIndex
}
func (b *BaseRuleContext) GetAltNumber() int {
return ATNInvalidAltNumber
}
func (b *BaseRuleContext) SetAltNumber(altNumber int) {}
// A context is empty if there is no invoking state meaning nobody call
// current context.
func (b *BaseRuleContext) IsEmpty() bool {
return b.invokingState == -1
}
// Return the combined text of all child nodes. This method only considers
// tokens which have been added to the parse tree.
// <p>
// Since tokens on hidden channels (e.g. whitespace or comments) are not
// added to the parse trees, they will not appear in the output of b
// method.
//
func (b *BaseRuleContext) GetParent() Tree {
return b.parentCtx
}

View File

@ -1,235 +0,0 @@
package antlr
import "math"
const (
_initalCapacity = 16
_initalBucketCapacity = 8
_loadFactor = 0.75
)
type Set interface {
Add(value interface{}) (added interface{})
Len() int
Get(value interface{}) (found interface{})
Contains(value interface{}) bool
Values() []interface{}
Each(f func(interface{}) bool)
}
type array2DHashSet struct {
buckets [][]Collectable[any]
hashcodeFunction func(interface{}) int
equalsFunction func(Collectable[any], Collectable[any]) bool
n int // How many elements in set
threshold int // when to expand
currentPrime int // jump by 4 primes each expand or whatever
initialBucketCapacity int
}
func (as *array2DHashSet) Each(f func(interface{}) bool) {
if as.Len() < 1 {
return
}
for _, bucket := range as.buckets {
for _, o := range bucket {
if o == nil {
break
}
if !f(o) {
return
}
}
}
}
func (as *array2DHashSet) Values() []interface{} {
if as.Len() < 1 {
return nil
}
values := make([]interface{}, 0, as.Len())
as.Each(func(i interface{}) bool {
values = append(values, i)
return true
})
return values
}
func (as *array2DHashSet) Contains(value Collectable[any]) bool {
return as.Get(value) != nil
}
func (as *array2DHashSet) Add(value Collectable[any]) interface{} {
if as.n > as.threshold {
as.expand()
}
return as.innerAdd(value)
}
func (as *array2DHashSet) expand() {
old := as.buckets
as.currentPrime += 4
var (
newCapacity = len(as.buckets) << 1
newTable = as.createBuckets(newCapacity)
newBucketLengths = make([]int, len(newTable))
)
as.buckets = newTable
as.threshold = int(float64(newCapacity) * _loadFactor)
for _, bucket := range old {
if bucket == nil {
continue
}
for _, o := range bucket {
if o == nil {
break
}
b := as.getBuckets(o)
bucketLength := newBucketLengths[b]
var newBucket []Collectable[any]
if bucketLength == 0 {
// new bucket
newBucket = as.createBucket(as.initialBucketCapacity)
newTable[b] = newBucket
} else {
newBucket = newTable[b]
if bucketLength == len(newBucket) {
// expand
newBucketCopy := make([]Collectable[any], len(newBucket)<<1)
copy(newBucketCopy[:bucketLength], newBucket)
newBucket = newBucketCopy
newTable[b] = newBucket
}
}
newBucket[bucketLength] = o
newBucketLengths[b]++
}
}
}
func (as *array2DHashSet) Len() int {
return as.n
}
func (as *array2DHashSet) Get(o Collectable[any]) interface{} {
if o == nil {
return nil
}
b := as.getBuckets(o)
bucket := as.buckets[b]
if bucket == nil { // no bucket
return nil
}
for _, e := range bucket {
if e == nil {
return nil // empty slot; not there
}
if as.equalsFunction(e, o) {
return e
}
}
return nil
}
func (as *array2DHashSet) innerAdd(o Collectable[any]) interface{} {
b := as.getBuckets(o)
bucket := as.buckets[b]
// new bucket
if bucket == nil {
bucket = as.createBucket(as.initialBucketCapacity)
bucket[0] = o
as.buckets[b] = bucket
as.n++
return o
}
// look for it in bucket
for i := 0; i < len(bucket); i++ {
existing := bucket[i]
if existing == nil { // empty slot; not there, add.
bucket[i] = o
as.n++
return o
}
if as.equalsFunction(existing, o) { // found existing, quit
return existing
}
}
// full bucket, expand and add to end
oldLength := len(bucket)
bucketCopy := make([]Collectable[any], oldLength<<1)
copy(bucketCopy[:oldLength], bucket)
bucket = bucketCopy
as.buckets[b] = bucket
bucket[oldLength] = o
as.n++
return o
}
func (as *array2DHashSet) getBuckets(value Collectable[any]) int {
hash := as.hashcodeFunction(value)
return hash & (len(as.buckets) - 1)
}
func (as *array2DHashSet) createBuckets(cap int) [][]Collectable[any] {
return make([][]Collectable[any], cap)
}
func (as *array2DHashSet) createBucket(cap int) []Collectable[any] {
return make([]Collectable[any], cap)
}
func newArray2DHashSetWithCap(
hashcodeFunction func(interface{}) int,
equalsFunction func(Collectable[any], Collectable[any]) bool,
initCap int,
initBucketCap int,
) *array2DHashSet {
if hashcodeFunction == nil {
hashcodeFunction = standardHashFunction
}
if equalsFunction == nil {
equalsFunction = standardEqualsFunction
}
ret := &array2DHashSet{
hashcodeFunction: hashcodeFunction,
equalsFunction: equalsFunction,
n: 0,
threshold: int(math.Floor(_initalCapacity * _loadFactor)),
currentPrime: 1,
initialBucketCapacity: initBucketCap,
}
ret.buckets = ret.createBuckets(initCap)
return ret
}
func newArray2DHashSet(
hashcodeFunction func(interface{}) int,
equalsFunction func(Collectable[any], Collectable[any]) bool,
) *array2DHashSet {
return newArray2DHashSetWithCap(hashcodeFunction, equalsFunction, _initalCapacity, _initalBucketCapacity)
}

18
vendor/github.com/antlr4-go/antlr/v4/.gitignore generated vendored Normal file
View File

@ -0,0 +1,18 @@
### Go template
# Binaries for programs and plugins
*.exe
*.exe~
*.dll
*.so
*.dylib
# Test binary, built with `go test -c`
*.test
# Go workspace file
go.work
# No Goland stuff in this repo
.idea

28
vendor/github.com/antlr4-go/antlr/v4/LICENSE generated vendored Normal file
View File

@ -0,0 +1,28 @@
Copyright (c) 2012-2023 The ANTLR Project. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither name of copyright holders nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

54
vendor/github.com/antlr4-go/antlr/v4/README.md generated vendored Normal file
View File

@ -0,0 +1,54 @@
[![Go Report Card](https://goreportcard.com/badge/github.com/antlr4-go/antlr?style=flat-square)](https://goreportcard.com/report/github.com/antlr4-go/antlr)
[![PkgGoDev](https://pkg.go.dev/badge/github.com/github.com/antlr4-go/antlr)](https://pkg.go.dev/github.com/antlr4-go/antlr)
[![Release](https://img.shields.io/github/v/release/antlr4-go/antlr?sort=semver&style=flat-square)](https://github.com/antlr4-go/antlr/releases/latest)
[![Release](https://img.shields.io/github/go-mod/go-version/antlr4-go/antlr?style=flat-square)](https://github.com/antlr4-go/antlr/releases/latest)
[![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg?style=flat-square)](https://github.com/antlr4-go/antlr/commit-activity)
[![License](https://img.shields.io/badge/License-BSD_3--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)
[![GitHub stars](https://img.shields.io/github/stars/antlr4-go/antlr?style=flat-square&label=Star&maxAge=2592000)](https://GitHub.com/Naereen/StrapDown.js/stargazers/)
# ANTLR4 Go Runtime Module Repo
IMPORTANT: Please submit PRs via a clone of the https://github.com/antlr/antlr4 repo, and not here.
- Do not submit PRs or any change requests to this repo
- This repo is read only and is updated by the ANTLR team to create a new release of the Go Runtime for ANTLR
- This repo contains the Go runtime that your generated projects should import
## Introduction
This repo contains the official modules for the Go Runtime for ANTLR. It is a copy of the runtime maintained
at: https://github.com/antlr/antlr4/tree/master/runtime/Go/antlr and is automatically updated by the ANTLR team to create
the official Go runtime release only. No development work is carried out in this repo and PRs are not accepted here.
The dev branch of this repo is kept in sync with the dev branch of the main ANTLR repo and is updated periodically.
### Why?
The `go get` command is unable to retrieve the Go runtime when it is embedded so
deeply in the main repo. A `go get` against the `antlr/antlr4` repo, while retrieving the correct source code for the runtime,
does not correctly resolve tags and will create a reference in your `go.mod` file that is unclear, will not upgrade smoothly and
causes confusion.
For instance, the current Go runtime release, which is tagged with v4.13.0 in `antlr/antlr4` is retrieved by go get as:
```sh
require (
github.com/antlr/antlr4/runtime/Go/antlr/v4 v4.0.0-20230219212500-1f9a474cc2dc
)
```
Where you would expect to see:
```sh
require (
github.com/antlr/antlr4/runtime/Go/antlr/v4 v4.13.0
)
```
The decision was taken to create a separate org in a separate repo to hold the official Go runtime for ANTLR and
from whence users can expect `go get` to behave as expected.
# Documentation
Please read the official documentation at: https://github.com/antlr/antlr4/blob/master/doc/index.md for tips on
migrating existing projects to use the new module location and for information on how to use the Go runtime in
general.

102
vendor/github.com/antlr4-go/antlr/v4/antlrdoc.go generated vendored Normal file
View File

@ -0,0 +1,102 @@
/*
Package antlr implements the Go version of the ANTLR 4 runtime.
# The ANTLR Tool
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing,
or translating structured text or binary files. It's widely used to build languages, tools, and frameworks.
From a grammar, ANTLR generates a parser that can build parse trees and also generates a listener interface
(or visitor) that makes it easy to respond to the recognition of phrases of interest.
# Go Runtime
At version 4.11.x and prior, the Go runtime was not properly versioned for go modules. After this point, the runtime
source code to be imported was held in the `runtime/Go/antlr/v4` directory, and the go.mod file was updated to reflect the version of
ANTLR4 that it is compatible with (I.E. uses the /v4 path).
However, this was found to be problematic, as it meant that with the runtime embedded so far underneath the root
of the repo, the `go get` and related commands could not properly resolve the location of the go runtime source code.
This meant that the reference to the runtime in your `go.mod` file would refer to the correct source code, but would not
list the release tag such as @4.12.0 - this was confusing, to say the least.
As of 4.12.1, the runtime is now available as a go module in its own repo, and can be imported as `github.com/antlr4-go/antlr`
(the go get command should also be used with this path). See the main documentation for the ANTLR4 project for more information,
which is available at [ANTLR docs]. The documentation for using the Go runtime is available at [Go runtime docs].
This means that if you are using the source code without modules, you should also use the source code in the [new repo].
Though we highly recommend that you use go modules, as they are now idiomatic for Go.
I am aware that this change will prove Hyrum's Law, but am prepared to live with it for the common good.
Go runtime author: [Jim Idle] jimi@idle.ws
# Code Generation
ANTLR supports the generation of code in a number of [target languages], and the generated code is supported by a
runtime library, written specifically to support the generated code in the target language. This library is the
runtime for the Go target.
To generate code for the go target, it is generally recommended to place the source grammar files in a package of
their own, and use the `.sh` script method of generating code, using the go generate directive. In that same directory
it is usual, though not required, to place the antlr tool that should be used to generate the code. That does mean
that the antlr tool JAR file will be checked in to your source code control though, so you are, of course, free to use any other
way of specifying the version of the ANTLR tool to use, such as aliasing in `.zshrc` or equivalent, or a profile in
your IDE, or configuration in your CI system. Checking in the jar does mean that it is easy to reproduce the build as
it was at any point in its history.
Here is a general/recommended template for an ANTLR based recognizer in Go:
.
parser
mygrammar.g4
antlr-4.12.1-complete.jar
generate.go
generate.sh
parsing - generated code goes here
error_listeners.go
go.mod
go.sum
main.go
main_test.go
Make sure that the package statement in your grammar file(s) reflects the go package the generated code will exist in.
The generate.go file then looks like this:
package parser
//go:generate ./generate.sh
And the generate.sh file will look similar to this:
#!/bin/sh
alias antlr4='java -Xmx500M -cp "./antlr4-4.12.1-complete.jar:$CLASSPATH" org.antlr.v4.Tool'
antlr4 -Dlanguage=Go -no-visitor -package parsing *.g4
depending on whether you want visitors or listeners or any other ANTLR options. Not that another option here
is to generate the code into a
From the command line at the root of your source package (location of go.mo)d) you can then simply issue the command:
go generate ./...
Which will generate the code for the parser, and place it in the parsing package. You can then use the generated code
by importing the parsing package.
There are no hard and fast rules on this. It is just a recommendation. You can generate the code in any way and to anywhere you like.
# Copyright Notice
Copyright (c) 2012-2023 The ANTLR Project. All rights reserved.
Use of this file is governed by the BSD 3-clause license, which can be found in the [LICENSE.txt] file in the project root.
[target languages]: https://github.com/antlr/antlr4/tree/master/runtime
[LICENSE.txt]: https://github.com/antlr/antlr4/blob/master/LICENSE.txt
[ANTLR docs]: https://github.com/antlr/antlr4/blob/master/doc/index.md
[new repo]: https://github.com/antlr4-go/antlr
[Jim Idle]: https://github.com/jimidle
[Go runtime docs]: https://github.com/antlr/antlr4/blob/master/doc/go-target.md
*/
package antlr

View File

@ -20,10 +20,11 @@ var ATNInvalidAltNumber int
// [ALL(*)]: https://www.antlr.org/papers/allstar-techreport.pdf
// [Recursive Transition Network]: https://en.wikipedia.org/wiki/Recursive_transition_network
type ATN struct {
// DecisionToState is the decision points for all rules, subrules, optional
// blocks, ()+, ()*, etc. Each subrule/rule is a decision point, and we must track them so we
// DecisionToState is the decision points for all rules, sub-rules, optional
// blocks, ()+, ()*, etc. Each sub-rule/rule is a decision point, and we must track them, so we
// can go back later and build DFA predictors for them. This includes
// all the rules, subrules, optional blocks, ()+, ()* etc...
// all the rules, sub-rules, optional blocks, ()+, ()* etc...
DecisionToState []DecisionState
// grammarType is the ATN type and is used for deserializing ATNs from strings.
@ -51,6 +52,8 @@ type ATN struct {
// specified, and otherwise is nil.
ruleToTokenType []int
// ATNStates is a list of all states in the ATN, ordered by state number.
//
states []ATNState
mu sync.Mutex

335
vendor/github.com/antlr4-go/antlr/v4/atn_config.go generated vendored Normal file
View File

@ -0,0 +1,335 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"fmt"
)
const (
lexerConfig = iota // Indicates that this ATNConfig is for a lexer
parserConfig // Indicates that this ATNConfig is for a parser
)
// ATNConfig is a tuple: (ATN state, predicted alt, syntactic, semantic
// context). The syntactic context is a graph-structured stack node whose
// path(s) to the root is the rule invocation(s) chain used to arrive in the
// state. The semantic context is the tree of semantic predicates encountered
// before reaching an ATN state.
type ATNConfig struct {
precedenceFilterSuppressed bool
state ATNState
alt int
context *PredictionContext
semanticContext SemanticContext
reachesIntoOuterContext int
cType int // lexerConfig or parserConfig
lexerActionExecutor *LexerActionExecutor
passedThroughNonGreedyDecision bool
}
// NewATNConfig6 creates a new ATNConfig instance given a state, alt and context only
func NewATNConfig6(state ATNState, alt int, context *PredictionContext) *ATNConfig {
return NewATNConfig5(state, alt, context, SemanticContextNone)
}
// NewATNConfig5 creates a new ATNConfig instance given a state, alt, context and semantic context
func NewATNConfig5(state ATNState, alt int, context *PredictionContext, semanticContext SemanticContext) *ATNConfig {
if semanticContext == nil {
panic("semanticContext cannot be nil") // TODO: Necessary?
}
pac := &ATNConfig{}
pac.state = state
pac.alt = alt
pac.context = context
pac.semanticContext = semanticContext
pac.cType = parserConfig
return pac
}
// NewATNConfig4 creates a new ATNConfig instance given an existing config, and a state only
func NewATNConfig4(c *ATNConfig, state ATNState) *ATNConfig {
return NewATNConfig(c, state, c.GetContext(), c.GetSemanticContext())
}
// NewATNConfig3 creates a new ATNConfig instance given an existing config, a state and a semantic context
func NewATNConfig3(c *ATNConfig, state ATNState, semanticContext SemanticContext) *ATNConfig {
return NewATNConfig(c, state, c.GetContext(), semanticContext)
}
// NewATNConfig2 creates a new ATNConfig instance given an existing config, and a context only
func NewATNConfig2(c *ATNConfig, semanticContext SemanticContext) *ATNConfig {
return NewATNConfig(c, c.GetState(), c.GetContext(), semanticContext)
}
// NewATNConfig1 creates a new ATNConfig instance given an existing config, a state, and a context only
func NewATNConfig1(c *ATNConfig, state ATNState, context *PredictionContext) *ATNConfig {
return NewATNConfig(c, state, context, c.GetSemanticContext())
}
// NewATNConfig creates a new ATNConfig instance given an existing config, a state, a context and a semantic context, other 'constructors'
// are just wrappers around this one.
func NewATNConfig(c *ATNConfig, state ATNState, context *PredictionContext, semanticContext SemanticContext) *ATNConfig {
if semanticContext == nil {
panic("semanticContext cannot be nil") // TODO: Remove this - probably put here for some bug that is now fixed
}
b := &ATNConfig{}
b.InitATNConfig(c, state, c.GetAlt(), context, semanticContext)
b.cType = parserConfig
return b
}
func (a *ATNConfig) InitATNConfig(c *ATNConfig, state ATNState, alt int, context *PredictionContext, semanticContext SemanticContext) {
a.state = state
a.alt = alt
a.context = context
a.semanticContext = semanticContext
a.reachesIntoOuterContext = c.GetReachesIntoOuterContext()
a.precedenceFilterSuppressed = c.getPrecedenceFilterSuppressed()
}
func (a *ATNConfig) getPrecedenceFilterSuppressed() bool {
return a.precedenceFilterSuppressed
}
func (a *ATNConfig) setPrecedenceFilterSuppressed(v bool) {
a.precedenceFilterSuppressed = v
}
// GetState returns the ATN state associated with this configuration
func (a *ATNConfig) GetState() ATNState {
return a.state
}
// GetAlt returns the alternative associated with this configuration
func (a *ATNConfig) GetAlt() int {
return a.alt
}
// SetContext sets the rule invocation stack associated with this configuration
func (a *ATNConfig) SetContext(v *PredictionContext) {
a.context = v
}
// GetContext returns the rule invocation stack associated with this configuration
func (a *ATNConfig) GetContext() *PredictionContext {
return a.context
}
// GetSemanticContext returns the semantic context associated with this configuration
func (a *ATNConfig) GetSemanticContext() SemanticContext {
return a.semanticContext
}
// GetReachesIntoOuterContext returns the count of references to an outer context from this configuration
func (a *ATNConfig) GetReachesIntoOuterContext() int {
return a.reachesIntoOuterContext
}
// SetReachesIntoOuterContext sets the count of references to an outer context from this configuration
func (a *ATNConfig) SetReachesIntoOuterContext(v int) {
a.reachesIntoOuterContext = v
}
// Equals is the default comparison function for an ATNConfig when no specialist implementation is required
// for a collection.
//
// An ATN configuration is equal to another if both have the same state, they
// predict the same alternative, and syntactic/semantic contexts are the same.
func (a *ATNConfig) Equals(o Collectable[*ATNConfig]) bool {
switch a.cType {
case lexerConfig:
return a.LEquals(o)
case parserConfig:
return a.PEquals(o)
default:
panic("Invalid ATNConfig type")
}
}
// PEquals is the default comparison function for a Parser ATNConfig when no specialist implementation is required
// for a collection.
//
// An ATN configuration is equal to another if both have the same state, they
// predict the same alternative, and syntactic/semantic contexts are the same.
func (a *ATNConfig) PEquals(o Collectable[*ATNConfig]) bool {
var other, ok = o.(*ATNConfig)
if !ok {
return false
}
if a == other {
return true
} else if other == nil {
return false
}
var equal bool
if a.context == nil {
equal = other.context == nil
} else {
equal = a.context.Equals(other.context)
}
var (
nums = a.state.GetStateNumber() == other.state.GetStateNumber()
alts = a.alt == other.alt
cons = a.semanticContext.Equals(other.semanticContext)
sups = a.precedenceFilterSuppressed == other.precedenceFilterSuppressed
)
return nums && alts && cons && sups && equal
}
// Hash is the default hash function for a parser ATNConfig, when no specialist hash function
// is required for a collection
func (a *ATNConfig) Hash() int {
switch a.cType {
case lexerConfig:
return a.LHash()
case parserConfig:
return a.PHash()
default:
panic("Invalid ATNConfig type")
}
}
// PHash is the default hash function for a parser ATNConfig, when no specialist hash function
// is required for a collection
func (a *ATNConfig) PHash() int {
var c int
if a.context != nil {
c = a.context.Hash()
}
h := murmurInit(7)
h = murmurUpdate(h, a.state.GetStateNumber())
h = murmurUpdate(h, a.alt)
h = murmurUpdate(h, c)
h = murmurUpdate(h, a.semanticContext.Hash())
return murmurFinish(h, 4)
}
// String returns a string representation of the ATNConfig, usually used for debugging purposes
func (a *ATNConfig) String() string {
var s1, s2, s3 string
if a.context != nil {
s1 = ",[" + fmt.Sprint(a.context) + "]"
}
if a.semanticContext != SemanticContextNone {
s2 = "," + fmt.Sprint(a.semanticContext)
}
if a.reachesIntoOuterContext > 0 {
s3 = ",up=" + fmt.Sprint(a.reachesIntoOuterContext)
}
return fmt.Sprintf("(%v,%v%v%v%v)", a.state, a.alt, s1, s2, s3)
}
func NewLexerATNConfig6(state ATNState, alt int, context *PredictionContext) *ATNConfig {
lac := &ATNConfig{}
lac.state = state
lac.alt = alt
lac.context = context
lac.semanticContext = SemanticContextNone
lac.cType = lexerConfig
return lac
}
func NewLexerATNConfig4(c *ATNConfig, state ATNState) *ATNConfig {
lac := &ATNConfig{}
lac.lexerActionExecutor = c.lexerActionExecutor
lac.passedThroughNonGreedyDecision = checkNonGreedyDecision(c, state)
lac.InitATNConfig(c, state, c.GetAlt(), c.GetContext(), c.GetSemanticContext())
lac.cType = lexerConfig
return lac
}
func NewLexerATNConfig3(c *ATNConfig, state ATNState, lexerActionExecutor *LexerActionExecutor) *ATNConfig {
lac := &ATNConfig{}
lac.lexerActionExecutor = lexerActionExecutor
lac.passedThroughNonGreedyDecision = checkNonGreedyDecision(c, state)
lac.InitATNConfig(c, state, c.GetAlt(), c.GetContext(), c.GetSemanticContext())
lac.cType = lexerConfig
return lac
}
func NewLexerATNConfig2(c *ATNConfig, state ATNState, context *PredictionContext) *ATNConfig {
lac := &ATNConfig{}
lac.lexerActionExecutor = c.lexerActionExecutor
lac.passedThroughNonGreedyDecision = checkNonGreedyDecision(c, state)
lac.InitATNConfig(c, state, c.GetAlt(), context, c.GetSemanticContext())
lac.cType = lexerConfig
return lac
}
//goland:noinspection GoUnusedExportedFunction
func NewLexerATNConfig1(state ATNState, alt int, context *PredictionContext) *ATNConfig {
lac := &ATNConfig{}
lac.state = state
lac.alt = alt
lac.context = context
lac.semanticContext = SemanticContextNone
lac.cType = lexerConfig
return lac
}
// LHash is the default hash function for Lexer ATNConfig objects, it can be used directly or via
// the default comparator [ObjEqComparator].
func (a *ATNConfig) LHash() int {
var f int
if a.passedThroughNonGreedyDecision {
f = 1
} else {
f = 0
}
h := murmurInit(7)
h = murmurUpdate(h, a.state.GetStateNumber())
h = murmurUpdate(h, a.alt)
h = murmurUpdate(h, a.context.Hash())
h = murmurUpdate(h, a.semanticContext.Hash())
h = murmurUpdate(h, f)
h = murmurUpdate(h, a.lexerActionExecutor.Hash())
h = murmurFinish(h, 6)
return h
}
// LEquals is the default comparison function for Lexer ATNConfig objects, it can be used directly or via
// the default comparator [ObjEqComparator].
func (a *ATNConfig) LEquals(other Collectable[*ATNConfig]) bool {
var otherT, ok = other.(*ATNConfig)
if !ok {
return false
} else if a == otherT {
return true
} else if a.passedThroughNonGreedyDecision != otherT.passedThroughNonGreedyDecision {
return false
}
switch {
case a.lexerActionExecutor == nil && otherT.lexerActionExecutor == nil:
return true
case a.lexerActionExecutor != nil && otherT.lexerActionExecutor != nil:
if !a.lexerActionExecutor.Equals(otherT.lexerActionExecutor) {
return false
}
default:
return false // One but not both, are nil
}
return a.PEquals(otherT)
}
func checkNonGreedyDecision(source *ATNConfig, target ATNState) bool {
var ds, ok = target.(DecisionState)
return source.passedThroughNonGreedyDecision || (ok && ds.getNonGreedy())
}

301
vendor/github.com/antlr4-go/antlr/v4/atn_config_set.go generated vendored Normal file
View File

@ -0,0 +1,301 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"fmt"
)
// ATNConfigSet is a specialized set of ATNConfig that tracks information
// about its elements and can combine similar configurations using a
// graph-structured stack.
type ATNConfigSet struct {
cachedHash int
// configLookup is used to determine whether two ATNConfigSets are equal. We
// need all configurations with the same (s, i, _, semctx) to be equal. A key
// effectively doubles the number of objects associated with ATNConfigs. All
// keys are hashed by (s, i, _, pi), not including the context. Wiped out when
// read-only because a set becomes a DFA state.
configLookup *JStore[*ATNConfig, Comparator[*ATNConfig]]
// configs is the added elements that did not match an existing key in configLookup
configs []*ATNConfig
// TODO: These fields make me pretty uncomfortable, but it is nice to pack up
// info together because it saves re-computation. Can we track conflicts as they
// are added to save scanning configs later?
conflictingAlts *BitSet
// dipsIntoOuterContext is used by parsers and lexers. In a lexer, it indicates
// we hit a pred while computing a closure operation. Do not make a DFA state
// from the ATNConfigSet in this case. TODO: How is this used by parsers?
dipsIntoOuterContext bool
// fullCtx is whether it is part of a full context LL prediction. Used to
// determine how to merge $. It is a wildcard with SLL, but not for an LL
// context merge.
fullCtx bool
// Used in parser and lexer. In lexer, it indicates we hit a pred
// while computing a closure operation. Don't make a DFA state from this set.
hasSemanticContext bool
// readOnly is whether it is read-only. Do not
// allow any code to manipulate the set if true because DFA states will point at
// sets and those must not change. It not, protect other fields; conflictingAlts
// in particular, which is assigned after readOnly.
readOnly bool
// TODO: These fields make me pretty uncomfortable, but it is nice to pack up
// info together because it saves re-computation. Can we track conflicts as they
// are added to save scanning configs later?
uniqueAlt int
}
// Alts returns the combined set of alts for all the configurations in this set.
func (b *ATNConfigSet) Alts() *BitSet {
alts := NewBitSet()
for _, it := range b.configs {
alts.add(it.GetAlt())
}
return alts
}
// NewATNConfigSet creates a new ATNConfigSet instance.
func NewATNConfigSet(fullCtx bool) *ATNConfigSet {
return &ATNConfigSet{
cachedHash: -1,
configLookup: NewJStore[*ATNConfig, Comparator[*ATNConfig]](aConfCompInst, ATNConfigLookupCollection, "NewATNConfigSet()"),
fullCtx: fullCtx,
}
}
// Add merges contexts with existing configs for (s, i, pi, _),
// where 's' is the ATNConfig.state, 'i' is the ATNConfig.alt, and
// 'pi' is the [ATNConfig].semanticContext.
//
// We use (s,i,pi) as the key.
// Updates dipsIntoOuterContext and hasSemanticContext when necessary.
func (b *ATNConfigSet) Add(config *ATNConfig, mergeCache *JPCMap) bool {
if b.readOnly {
panic("set is read-only")
}
if config.GetSemanticContext() != SemanticContextNone {
b.hasSemanticContext = true
}
if config.GetReachesIntoOuterContext() > 0 {
b.dipsIntoOuterContext = true
}
existing, present := b.configLookup.Put(config)
// The config was not already in the set
//
if !present {
b.cachedHash = -1
b.configs = append(b.configs, config) // Track order here
return true
}
// Merge a previous (s, i, pi, _) with it and save the result
rootIsWildcard := !b.fullCtx
merged := merge(existing.GetContext(), config.GetContext(), rootIsWildcard, mergeCache)
// No need to check for existing.context because config.context is in the cache,
// since the only way to create new graphs is the "call rule" and here. We cache
// at both places.
existing.SetReachesIntoOuterContext(intMax(existing.GetReachesIntoOuterContext(), config.GetReachesIntoOuterContext()))
// Preserve the precedence filter suppression during the merge
if config.getPrecedenceFilterSuppressed() {
existing.setPrecedenceFilterSuppressed(true)
}
// Replace the context because there is no need to do alt mapping
existing.SetContext(merged)
return true
}
// GetStates returns the set of states represented by all configurations in this config set
func (b *ATNConfigSet) GetStates() *JStore[ATNState, Comparator[ATNState]] {
// states uses the standard comparator and Hash() provided by the ATNState instance
//
states := NewJStore[ATNState, Comparator[ATNState]](aStateEqInst, ATNStateCollection, "ATNConfigSet.GetStates()")
for i := 0; i < len(b.configs); i++ {
states.Put(b.configs[i].GetState())
}
return states
}
func (b *ATNConfigSet) GetPredicates() []SemanticContext {
predicates := make([]SemanticContext, 0)
for i := 0; i < len(b.configs); i++ {
c := b.configs[i].GetSemanticContext()
if c != SemanticContextNone {
predicates = append(predicates, c)
}
}
return predicates
}
func (b *ATNConfigSet) OptimizeConfigs(interpreter *BaseATNSimulator) {
if b.readOnly {
panic("set is read-only")
}
// Empty indicate no optimization is possible
if b.configLookup == nil || b.configLookup.Len() == 0 {
return
}
for i := 0; i < len(b.configs); i++ {
config := b.configs[i]
config.SetContext(interpreter.getCachedContext(config.GetContext()))
}
}
func (b *ATNConfigSet) AddAll(coll []*ATNConfig) bool {
for i := 0; i < len(coll); i++ {
b.Add(coll[i], nil)
}
return false
}
// Compare The configs are only equal if they are in the same order and their Equals function returns true.
// Java uses ArrayList.equals(), which requires the same order.
func (b *ATNConfigSet) Compare(bs *ATNConfigSet) bool {
if len(b.configs) != len(bs.configs) {
return false
}
for i := 0; i < len(b.configs); i++ {
if !b.configs[i].Equals(bs.configs[i]) {
return false
}
}
return true
}
func (b *ATNConfigSet) Equals(other Collectable[ATNConfig]) bool {
if b == other {
return true
} else if _, ok := other.(*ATNConfigSet); !ok {
return false
}
other2 := other.(*ATNConfigSet)
var eca bool
switch {
case b.conflictingAlts == nil && other2.conflictingAlts == nil:
eca = true
case b.conflictingAlts != nil && other2.conflictingAlts != nil:
eca = b.conflictingAlts.equals(other2.conflictingAlts)
}
return b.configs != nil &&
b.fullCtx == other2.fullCtx &&
b.uniqueAlt == other2.uniqueAlt &&
eca &&
b.hasSemanticContext == other2.hasSemanticContext &&
b.dipsIntoOuterContext == other2.dipsIntoOuterContext &&
b.Compare(other2)
}
func (b *ATNConfigSet) Hash() int {
if b.readOnly {
if b.cachedHash == -1 {
b.cachedHash = b.hashCodeConfigs()
}
return b.cachedHash
}
return b.hashCodeConfigs()
}
func (b *ATNConfigSet) hashCodeConfigs() int {
h := 1
for _, config := range b.configs {
h = 31*h + config.Hash()
}
return h
}
func (b *ATNConfigSet) Contains(item *ATNConfig) bool {
if b.readOnly {
panic("not implemented for read-only sets")
}
if b.configLookup == nil {
return false
}
return b.configLookup.Contains(item)
}
func (b *ATNConfigSet) ContainsFast(item *ATNConfig) bool {
return b.Contains(item)
}
func (b *ATNConfigSet) Clear() {
if b.readOnly {
panic("set is read-only")
}
b.configs = make([]*ATNConfig, 0)
b.cachedHash = -1
b.configLookup = NewJStore[*ATNConfig, Comparator[*ATNConfig]](aConfCompInst, ATNConfigLookupCollection, "NewATNConfigSet()")
}
func (b *ATNConfigSet) String() string {
s := "["
for i, c := range b.configs {
s += c.String()
if i != len(b.configs)-1 {
s += ", "
}
}
s += "]"
if b.hasSemanticContext {
s += ",hasSemanticContext=" + fmt.Sprint(b.hasSemanticContext)
}
if b.uniqueAlt != ATNInvalidAltNumber {
s += ",uniqueAlt=" + fmt.Sprint(b.uniqueAlt)
}
if b.conflictingAlts != nil {
s += ",conflictingAlts=" + b.conflictingAlts.String()
}
if b.dipsIntoOuterContext {
s += ",dipsIntoOuterContext"
}
return s
}
// NewOrderedATNConfigSet creates a config set with a slightly different Hash/Equal pair
// for use in lexers.
func NewOrderedATNConfigSet() *ATNConfigSet {
return &ATNConfigSet{
cachedHash: -1,
// This set uses the standard Hash() and Equals() from ATNConfig
configLookup: NewJStore[*ATNConfig, Comparator[*ATNConfig]](aConfEqInst, ATNConfigCollection, "ATNConfigSet.NewOrderedATNConfigSet()"),
fullCtx: false,
}
}

View File

@ -20,7 +20,7 @@ func (opts *ATNDeserializationOptions) ReadOnly() bool {
func (opts *ATNDeserializationOptions) SetReadOnly(readOnly bool) {
if opts.readOnly {
panic(errors.New("Cannot mutate read only ATNDeserializationOptions"))
panic(errors.New("cannot mutate read only ATNDeserializationOptions"))
}
opts.readOnly = readOnly
}
@ -31,7 +31,7 @@ func (opts *ATNDeserializationOptions) VerifyATN() bool {
func (opts *ATNDeserializationOptions) SetVerifyATN(verifyATN bool) {
if opts.readOnly {
panic(errors.New("Cannot mutate read only ATNDeserializationOptions"))
panic(errors.New("cannot mutate read only ATNDeserializationOptions"))
}
opts.verifyATN = verifyATN
}
@ -42,11 +42,12 @@ func (opts *ATNDeserializationOptions) GenerateRuleBypassTransitions() bool {
func (opts *ATNDeserializationOptions) SetGenerateRuleBypassTransitions(generateRuleBypassTransitions bool) {
if opts.readOnly {
panic(errors.New("Cannot mutate read only ATNDeserializationOptions"))
panic(errors.New("cannot mutate read only ATNDeserializationOptions"))
}
opts.generateRuleBypassTransitions = generateRuleBypassTransitions
}
//goland:noinspection GoUnusedExportedFunction
func DefaultATNDeserializationOptions() *ATNDeserializationOptions {
return NewATNDeserializationOptions(&defaultATNDeserializationOptions)
}

View File

@ -35,6 +35,7 @@ func NewATNDeserializer(options *ATNDeserializationOptions) *ATNDeserializer {
return &ATNDeserializer{options: options}
}
//goland:noinspection GoUnusedFunction
func stringInSlice(a string, list []string) int {
for i, b := range list {
if b == a {
@ -193,7 +194,7 @@ func (a *ATNDeserializer) readModes(atn *ATN) {
}
}
func (a *ATNDeserializer) readSets(atn *ATN, sets []*IntervalSet) []*IntervalSet {
func (a *ATNDeserializer) readSets(_ *ATN, sets []*IntervalSet) []*IntervalSet {
m := a.readInt()
// Preallocate the needed capacity.
@ -350,7 +351,7 @@ func (a *ATNDeserializer) generateRuleBypassTransition(atn *ATN, idx int) {
bypassStart.endState = bypassStop
atn.defineDecisionState(bypassStart.BaseDecisionState)
atn.defineDecisionState(&bypassStart.BaseDecisionState)
bypassStop.startState = bypassStart
@ -450,7 +451,7 @@ func (a *ATNDeserializer) markPrecedenceDecisions(atn *ATN) {
continue
}
// We analyze the ATN to determine if a ATN decision state is the
// We analyze the [ATN] to determine if an ATN decision state is the
// decision for the closure block that determines whether a
// precedence rule should continue or complete.
if atn.ruleToStartState[state.GetRuleIndex()].isPrecedenceRule {
@ -553,7 +554,7 @@ func (a *ATNDeserializer) readInt() int {
return int(v) // data is 32 bits but int is at least that big
}
func (a *ATNDeserializer) edgeFactory(atn *ATN, typeIndex, src, trg, arg1, arg2, arg3 int, sets []*IntervalSet) Transition {
func (a *ATNDeserializer) edgeFactory(atn *ATN, typeIndex, _, trg, arg1, arg2, arg3 int, sets []*IntervalSet) Transition {
target := atn.states[trg]
switch typeIndex {

View File

@ -4,7 +4,7 @@
package antlr
var ATNSimulatorError = NewDFAState(0x7FFFFFFF, NewBaseATNConfigSet(false))
var ATNSimulatorError = NewDFAState(0x7FFFFFFF, NewATNConfigSet(false))
type IATNSimulator interface {
SharedContextCache() *PredictionContextCache
@ -18,22 +18,13 @@ type BaseATNSimulator struct {
decisionToDFA []*DFA
}
func NewBaseATNSimulator(atn *ATN, sharedContextCache *PredictionContextCache) *BaseATNSimulator {
b := new(BaseATNSimulator)
b.atn = atn
b.sharedContextCache = sharedContextCache
return b
}
func (b *BaseATNSimulator) getCachedContext(context PredictionContext) PredictionContext {
func (b *BaseATNSimulator) getCachedContext(context *PredictionContext) *PredictionContext {
if b.sharedContextCache == nil {
return context
}
visited := make(map[PredictionContext]PredictionContext)
//visited := NewJMap[*PredictionContext, *PredictionContext, Comparator[*PredictionContext]](pContextEqInst, PredictionVisitedCollection, "Visit map in getCachedContext()")
visited := NewVisitRecord()
return getCachedBasePredictionContext(context, b.sharedContextCache, visited)
}

View File

@ -4,7 +4,11 @@
package antlr
import "strconv"
import (
"fmt"
"os"
"strconv"
)
// Constants for serialization.
const (
@ -25,6 +29,7 @@ const (
ATNStateInvalidStateNumber = -1
)
//goland:noinspection GoUnusedGlobalVariable
var ATNStateInitialNumTransitions = 4
type ATNState interface {
@ -73,7 +78,7 @@ type BaseATNState struct {
transitions []Transition
}
func NewBaseATNState() *BaseATNState {
func NewATNState() *BaseATNState {
return &BaseATNState{stateNumber: ATNStateInvalidStateNumber, stateType: ATNStateInvalidType}
}
@ -148,27 +153,46 @@ func (as *BaseATNState) AddTransition(trans Transition, index int) {
if len(as.transitions) == 0 {
as.epsilonOnlyTransitions = trans.getIsEpsilon()
} else if as.epsilonOnlyTransitions != trans.getIsEpsilon() {
_, _ = fmt.Fprintf(os.Stdin, "ATN state %d has both epsilon and non-epsilon transitions.\n", as.stateNumber)
as.epsilonOnlyTransitions = false
}
// TODO: Check code for already present compared to the Java equivalent
//alreadyPresent := false
//for _, t := range as.transitions {
// if t.getTarget().GetStateNumber() == trans.getTarget().GetStateNumber() {
// if t.getLabel() != nil && trans.getLabel() != nil && trans.getLabel().Equals(t.getLabel()) {
// alreadyPresent = true
// break
// }
// } else if t.getIsEpsilon() && trans.getIsEpsilon() {
// alreadyPresent = true
// break
// }
//}
//if !alreadyPresent {
if index == -1 {
as.transitions = append(as.transitions, trans)
} else {
as.transitions = append(as.transitions[:index], append([]Transition{trans}, as.transitions[index:]...)...)
// TODO: as.transitions.splice(index, 1, trans)
}
//} else {
// _, _ = fmt.Fprintf(os.Stderr, "Transition already present in state %d\n", as.stateNumber)
//}
}
type BasicState struct {
*BaseATNState
BaseATNState
}
func NewBasicState() *BasicState {
b := NewBaseATNState()
b.stateType = ATNStateBasic
return &BasicState{BaseATNState: b}
return &BasicState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateBasic,
},
}
}
type DecisionState interface {
@ -182,13 +206,19 @@ type DecisionState interface {
}
type BaseDecisionState struct {
*BaseATNState
BaseATNState
decision int
nonGreedy bool
}
func NewBaseDecisionState() *BaseDecisionState {
return &BaseDecisionState{BaseATNState: NewBaseATNState(), decision: -1}
return &BaseDecisionState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateBasic,
},
decision: -1,
}
}
func (s *BaseDecisionState) getDecision() int {
@ -216,12 +246,20 @@ type BlockStartState interface {
// BaseBlockStartState is the start of a regular (...) block.
type BaseBlockStartState struct {
*BaseDecisionState
BaseDecisionState
endState *BlockEndState
}
func NewBlockStartState() *BaseBlockStartState {
return &BaseBlockStartState{BaseDecisionState: NewBaseDecisionState()}
return &BaseBlockStartState{
BaseDecisionState: BaseDecisionState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateBasic,
},
decision: -1,
},
}
}
func (s *BaseBlockStartState) getEndState() *BlockEndState {
@ -233,31 +271,38 @@ func (s *BaseBlockStartState) setEndState(b *BlockEndState) {
}
type BasicBlockStartState struct {
*BaseBlockStartState
BaseBlockStartState
}
func NewBasicBlockStartState() *BasicBlockStartState {
b := NewBlockStartState()
b.stateType = ATNStateBlockStart
return &BasicBlockStartState{BaseBlockStartState: b}
return &BasicBlockStartState{
BaseBlockStartState: BaseBlockStartState{
BaseDecisionState: BaseDecisionState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateBlockStart,
},
},
},
}
}
var _ BlockStartState = &BasicBlockStartState{}
// BlockEndState is a terminal node of a simple (a|b|c) block.
type BlockEndState struct {
*BaseATNState
BaseATNState
startState ATNState
}
func NewBlockEndState() *BlockEndState {
b := NewBaseATNState()
b.stateType = ATNStateBlockEnd
return &BlockEndState{BaseATNState: b}
return &BlockEndState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateBlockEnd,
},
startState: nil,
}
}
// RuleStopState is the last node in the ATN for a rule, unless that rule is the
@ -265,43 +310,48 @@ func NewBlockEndState() *BlockEndState {
// encode references to all calls to this rule to compute FOLLOW sets for error
// handling.
type RuleStopState struct {
*BaseATNState
BaseATNState
}
func NewRuleStopState() *RuleStopState {
b := NewBaseATNState()
b.stateType = ATNStateRuleStop
return &RuleStopState{BaseATNState: b}
return &RuleStopState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateRuleStop,
},
}
}
type RuleStartState struct {
*BaseATNState
BaseATNState
stopState ATNState
isPrecedenceRule bool
}
func NewRuleStartState() *RuleStartState {
b := NewBaseATNState()
b.stateType = ATNStateRuleStart
return &RuleStartState{BaseATNState: b}
return &RuleStartState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateRuleStart,
},
}
}
// PlusLoopbackState is a decision state for A+ and (A|B)+. It has two
// transitions: one to the loop back to start of the block, and one to exit.
type PlusLoopbackState struct {
*BaseDecisionState
BaseDecisionState
}
func NewPlusLoopbackState() *PlusLoopbackState {
b := NewBaseDecisionState()
b.stateType = ATNStatePlusLoopBack
return &PlusLoopbackState{BaseDecisionState: b}
return &PlusLoopbackState{
BaseDecisionState: BaseDecisionState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStatePlusLoopBack,
},
},
}
}
// PlusBlockStartState is the start of a (A|B|...)+ loop. Technically it is a
@ -309,85 +359,103 @@ func NewPlusLoopbackState() *PlusLoopbackState {
// it is included for completeness. In reality, PlusLoopbackState is the real
// decision-making node for A+.
type PlusBlockStartState struct {
*BaseBlockStartState
BaseBlockStartState
loopBackState ATNState
}
func NewPlusBlockStartState() *PlusBlockStartState {
b := NewBlockStartState()
b.stateType = ATNStatePlusBlockStart
return &PlusBlockStartState{BaseBlockStartState: b}
return &PlusBlockStartState{
BaseBlockStartState: BaseBlockStartState{
BaseDecisionState: BaseDecisionState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStatePlusBlockStart,
},
},
},
}
}
var _ BlockStartState = &PlusBlockStartState{}
// StarBlockStartState is the block that begins a closure loop.
type StarBlockStartState struct {
*BaseBlockStartState
BaseBlockStartState
}
func NewStarBlockStartState() *StarBlockStartState {
b := NewBlockStartState()
b.stateType = ATNStateStarBlockStart
return &StarBlockStartState{BaseBlockStartState: b}
return &StarBlockStartState{
BaseBlockStartState: BaseBlockStartState{
BaseDecisionState: BaseDecisionState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateStarBlockStart,
},
},
},
}
}
var _ BlockStartState = &StarBlockStartState{}
type StarLoopbackState struct {
*BaseATNState
BaseATNState
}
func NewStarLoopbackState() *StarLoopbackState {
b := NewBaseATNState()
b.stateType = ATNStateStarLoopBack
return &StarLoopbackState{BaseATNState: b}
return &StarLoopbackState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateStarLoopBack,
},
}
}
type StarLoopEntryState struct {
*BaseDecisionState
BaseDecisionState
loopBackState ATNState
precedenceRuleDecision bool
}
func NewStarLoopEntryState() *StarLoopEntryState {
b := NewBaseDecisionState()
b.stateType = ATNStateStarLoopEntry
// False precedenceRuleDecision indicates whether s state can benefit from a precedence DFA during SLL decision making.
return &StarLoopEntryState{BaseDecisionState: b}
return &StarLoopEntryState{
BaseDecisionState: BaseDecisionState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateStarLoopEntry,
},
},
}
}
// LoopEndState marks the end of a * or + loop.
type LoopEndState struct {
*BaseATNState
BaseATNState
loopBackState ATNState
}
func NewLoopEndState() *LoopEndState {
b := NewBaseATNState()
b.stateType = ATNStateLoopEnd
return &LoopEndState{BaseATNState: b}
return &LoopEndState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateLoopEnd,
},
}
}
// TokensStartState is the Tokens rule start state linking to each lexer rule start state.
type TokensStartState struct {
*BaseDecisionState
BaseDecisionState
}
func NewTokensStartState() *TokensStartState {
b := NewBaseDecisionState()
b.stateType = ATNStateTokenStart
return &TokensStartState{BaseDecisionState: b}
return &TokensStartState{
BaseDecisionState: BaseDecisionState{
BaseATNState: BaseATNState{
stateNumber: ATNStateInvalidStateNumber,
stateType: ATNStateTokenStart,
},
},
}
}

View File

@ -8,5 +8,5 @@ type CharStream interface {
IntStream
GetText(int, int) string
GetTextFromTokens(start, end Token) string
GetTextFromInterval(*Interval) string
GetTextFromInterval(Interval) string
}

View File

@ -28,22 +28,24 @@ type CommonTokenStream struct {
// trivial with bt field.
fetchedEOF bool
// index indexs into tokens of the current token (next token to consume).
// index into [tokens] of the current token (next token to consume).
// tokens[p] should be LT(1). It is set to -1 when the stream is first
// constructed or when SetTokenSource is called, indicating that the first token
// has not yet been fetched from the token source. For additional information,
// see the documentation of IntStream for a description of initializing methods.
// see the documentation of [IntStream] for a description of initializing methods.
index int
// tokenSource is the TokenSource from which tokens for the bt stream are
// tokenSource is the [TokenSource] from which tokens for the bt stream are
// fetched.
tokenSource TokenSource
// tokens is all tokens fetched from the token source. The list is considered a
// tokens contains all tokens fetched from the token source. The list is considered a
// complete view of the input once fetchedEOF is set to true.
tokens []Token
}
// NewCommonTokenStream creates a new CommonTokenStream instance using the supplied lexer to produce
// tokens and will pull tokens from the given lexer channel.
func NewCommonTokenStream(lexer Lexer, channel int) *CommonTokenStream {
return &CommonTokenStream{
channel: channel,
@ -53,6 +55,7 @@ func NewCommonTokenStream(lexer Lexer, channel int) *CommonTokenStream {
}
}
// GetAllTokens returns all tokens currently pulled from the token source.
func (c *CommonTokenStream) GetAllTokens() []Token {
return c.tokens
}
@ -61,9 +64,11 @@ func (c *CommonTokenStream) Mark() int {
return 0
}
func (c *CommonTokenStream) Release(marker int) {}
func (c *CommonTokenStream) Release(_ int) {}
func (c *CommonTokenStream) reset() {
func (c *CommonTokenStream) Reset() {
c.fetchedEOF = false
c.tokens = make([]Token, 0)
c.Seek(0)
}
@ -107,7 +112,7 @@ func (c *CommonTokenStream) Consume() {
// Sync makes sure index i in tokens has a token and returns true if a token is
// located at index i and otherwise false.
func (c *CommonTokenStream) Sync(i int) bool {
n := i - len(c.tokens) + 1 // TODO: How many more elements do we need?
n := i - len(c.tokens) + 1 // How many more elements do we need?
if n > 0 {
fetched := c.fetch(n)
@ -193,12 +198,13 @@ func (c *CommonTokenStream) SetTokenSource(tokenSource TokenSource) {
c.tokenSource = tokenSource
c.tokens = make([]Token, 0)
c.index = -1
c.fetchedEOF = false
}
// NextTokenOnChannel returns the index of the next token on channel given a
// starting index. Returns i if tokens[i] is on channel. Returns -1 if there are
// no tokens on channel between i and EOF.
func (c *CommonTokenStream) NextTokenOnChannel(i, channel int) int {
// no tokens on channel between 'i' and [TokenEOF].
func (c *CommonTokenStream) NextTokenOnChannel(i, _ int) int {
c.Sync(i)
if i >= len(c.tokens) {
@ -244,7 +250,7 @@ func (c *CommonTokenStream) GetHiddenTokensToRight(tokenIndex, channel int) []To
nextOnChannel := c.NextTokenOnChannel(tokenIndex+1, LexerDefaultTokenChannel)
from := tokenIndex + 1
// If no onchannel to the right, then nextOnChannel == -1, so set to to last token
// If no onChannel to the right, then nextOnChannel == -1, so set 'to' to the last token
var to int
if nextOnChannel == -1 {
@ -314,7 +320,8 @@ func (c *CommonTokenStream) Index() int {
}
func (c *CommonTokenStream) GetAllText() string {
return c.GetTextFromInterval(nil)
c.Fill()
return c.GetTextFromInterval(NewInterval(0, len(c.tokens)-1))
}
func (c *CommonTokenStream) GetTextFromTokens(start, end Token) string {
@ -329,15 +336,9 @@ func (c *CommonTokenStream) GetTextFromRuleContext(interval RuleContext) string
return c.GetTextFromInterval(interval.GetSourceInterval())
}
func (c *CommonTokenStream) GetTextFromInterval(interval *Interval) string {
func (c *CommonTokenStream) GetTextFromInterval(interval Interval) string {
c.lazyInit()
if interval == nil {
c.Fill()
interval = NewInterval(0, len(c.tokens)-1)
} else {
c.Sync(interval.Stop)
}
c.Sync(interval.Stop)
start := interval.Start
stop := interval.Stop

View File

@ -18,17 +18,20 @@ package antlr
// type safety and avoid having to implement this for every type that we want to perform comparison on.
//
// This comparator works by using the standard Hash() and Equals() methods of the type T that is being compared. Which
// allows us to use it in any collection instance that does nto require a special hash or equals implementation.
// allows us to use it in any collection instance that does not require a special hash or equals implementation.
type ObjEqComparator[T Collectable[T]] struct{}
var (
aStateEqInst = &ObjEqComparator[ATNState]{}
aConfEqInst = &ObjEqComparator[ATNConfig]{}
aConfCompInst = &ATNConfigComparator[ATNConfig]{}
atnConfCompInst = &BaseATNConfigComparator[ATNConfig]{}
aStateEqInst = &ObjEqComparator[ATNState]{}
aConfEqInst = &ObjEqComparator[*ATNConfig]{}
// aConfCompInst is the comparator used for the ATNConfigSet for the configLookup cache
aConfCompInst = &ATNConfigComparator[*ATNConfig]{}
atnConfCompInst = &BaseATNConfigComparator[*ATNConfig]{}
dfaStateEqInst = &ObjEqComparator[*DFAState]{}
semctxEqInst = &ObjEqComparator[SemanticContext]{}
atnAltCfgEqInst = &ATNAltConfigComparator[ATNConfig]{}
atnAltCfgEqInst = &ATNAltConfigComparator[*ATNConfig]{}
pContextEqInst = &ObjEqComparator[*PredictionContext]{}
)
// Equals2 delegates to the Equals() method of type T
@ -44,14 +47,14 @@ func (c *ObjEqComparator[T]) Hash1(o T) int {
type SemCComparator[T Collectable[T]] struct{}
// ATNConfigComparator is used as the compartor for the configLookup field of an ATNConfigSet
// ATNConfigComparator is used as the comparator for the configLookup field of an ATNConfigSet
// and has a custom Equals() and Hash() implementation, because equality is not based on the
// standard Hash() and Equals() methods of the ATNConfig type.
type ATNConfigComparator[T Collectable[T]] struct {
}
// Equals2 is a custom comparator for ATNConfigs specifically for configLookup
func (c *ATNConfigComparator[T]) Equals2(o1, o2 ATNConfig) bool {
func (c *ATNConfigComparator[T]) Equals2(o1, o2 *ATNConfig) bool {
// Same pointer, must be equal, even if both nil
//
@ -72,7 +75,8 @@ func (c *ATNConfigComparator[T]) Equals2(o1, o2 ATNConfig) bool {
}
// Hash1 is custom hash implementation for ATNConfigs specifically for configLookup
func (c *ATNConfigComparator[T]) Hash1(o ATNConfig) int {
func (c *ATNConfigComparator[T]) Hash1(o *ATNConfig) int {
hash := 7
hash = 31*hash + o.GetState().GetStateNumber()
hash = 31*hash + o.GetAlt()
@ -85,7 +89,7 @@ type ATNAltConfigComparator[T Collectable[T]] struct {
}
// Equals2 is a custom comparator for ATNConfigs specifically for configLookup
func (c *ATNAltConfigComparator[T]) Equals2(o1, o2 ATNConfig) bool {
func (c *ATNAltConfigComparator[T]) Equals2(o1, o2 *ATNConfig) bool {
// Same pointer, must be equal, even if both nil
//
@ -105,21 +109,21 @@ func (c *ATNAltConfigComparator[T]) Equals2(o1, o2 ATNConfig) bool {
}
// Hash1 is custom hash implementation for ATNConfigs specifically for configLookup
func (c *ATNAltConfigComparator[T]) Hash1(o ATNConfig) int {
func (c *ATNAltConfigComparator[T]) Hash1(o *ATNConfig) int {
h := murmurInit(7)
h = murmurUpdate(h, o.GetState().GetStateNumber())
h = murmurUpdate(h, o.GetContext().Hash())
return murmurFinish(h, 2)
}
// BaseATNConfigComparator is used as the comparator for the configLookup field of a BaseATNConfigSet
// BaseATNConfigComparator is used as the comparator for the configLookup field of a ATNConfigSet
// and has a custom Equals() and Hash() implementation, because equality is not based on the
// standard Hash() and Equals() methods of the ATNConfig type.
type BaseATNConfigComparator[T Collectable[T]] struct {
}
// Equals2 is a custom comparator for ATNConfigs specifically for baseATNConfigSet
func (c *BaseATNConfigComparator[T]) Equals2(o1, o2 ATNConfig) bool {
func (c *BaseATNConfigComparator[T]) Equals2(o1, o2 *ATNConfig) bool {
// Same pointer, must be equal, even if both nil
//
@ -141,7 +145,6 @@ func (c *BaseATNConfigComparator[T]) Equals2(o1, o2 ATNConfig) bool {
// Hash1 is custom hash implementation for ATNConfigs specifically for configLookup, but in fact just
// delegates to the standard Hash() method of the ATNConfig type.
func (c *BaseATNConfigComparator[T]) Hash1(o ATNConfig) int {
func (c *BaseATNConfigComparator[T]) Hash1(o *ATNConfig) int {
return o.Hash()
}

214
vendor/github.com/antlr4-go/antlr/v4/configuration.go generated vendored Normal file
View File

@ -0,0 +1,214 @@
package antlr
type runtimeConfiguration struct {
statsTraceStacks bool
lexerATNSimulatorDebug bool
lexerATNSimulatorDFADebug bool
parserATNSimulatorDebug bool
parserATNSimulatorTraceATNSim bool
parserATNSimulatorDFADebug bool
parserATNSimulatorRetryDebug bool
lRLoopEntryBranchOpt bool
memoryManager bool
}
// Global runtime configuration
var runtimeConfig = runtimeConfiguration{
lRLoopEntryBranchOpt: true,
}
type runtimeOption func(*runtimeConfiguration) error
// ConfigureRuntime allows the runtime to be configured globally setting things like trace and statistics options.
// It uses the functional options pattern for go. This is a package global function as it operates on the runtime
// configuration regardless of the instantiation of anything higher up such as a parser or lexer. Generally this is
// used for debugging/tracing/statistics options, which are usually used by the runtime maintainers (or rather the
// only maintainer). However, it is possible that you might want to use this to set a global option concerning the
// memory allocation type used by the runtime such as sync.Pool or not.
//
// The options are applied in the order they are passed in, so the last option will override any previous options.
//
// For example, if you want to turn on the collection create point stack flag to true, you can do:
//
// antlr.ConfigureRuntime(antlr.WithStatsTraceStacks(true))
//
// If you want to turn it off, you can do:
//
// antlr.ConfigureRuntime(antlr.WithStatsTraceStacks(false))
func ConfigureRuntime(options ...runtimeOption) error {
for _, option := range options {
err := option(&runtimeConfig)
if err != nil {
return err
}
}
return nil
}
// WithStatsTraceStacks sets the global flag indicating whether to collect stack traces at the create-point of
// certain structs, such as collections, or the use point of certain methods such as Put().
// Because this can be expensive, it is turned off by default. However, it
// can be useful to track down exactly where memory is being created and used.
//
// Use:
//
// antlr.ConfigureRuntime(antlr.WithStatsTraceStacks(true))
//
// You can turn it off at any time using:
//
// antlr.ConfigureRuntime(antlr.WithStatsTraceStacks(false))
func WithStatsTraceStacks(trace bool) runtimeOption {
return func(config *runtimeConfiguration) error {
config.statsTraceStacks = trace
return nil
}
}
// WithLexerATNSimulatorDebug sets the global flag indicating whether to log debug information from the lexer [ATN]
// simulator. This is useful for debugging lexer issues by comparing the output with the Java runtime. Only useful
// to the runtime maintainers.
//
// Use:
//
// antlr.ConfigureRuntime(antlr.WithLexerATNSimulatorDebug(true))
//
// You can turn it off at any time using:
//
// antlr.ConfigureRuntime(antlr.WithLexerATNSimulatorDebug(false))
func WithLexerATNSimulatorDebug(debug bool) runtimeOption {
return func(config *runtimeConfiguration) error {
config.lexerATNSimulatorDebug = debug
return nil
}
}
// WithLexerATNSimulatorDFADebug sets the global flag indicating whether to log debug information from the lexer [ATN] [DFA]
// simulator. This is useful for debugging lexer issues by comparing the output with the Java runtime. Only useful
// to the runtime maintainers.
//
// Use:
//
// antlr.ConfigureRuntime(antlr.WithLexerATNSimulatorDFADebug(true))
//
// You can turn it off at any time using:
//
// antlr.ConfigureRuntime(antlr.WithLexerATNSimulatorDFADebug(false))
func WithLexerATNSimulatorDFADebug(debug bool) runtimeOption {
return func(config *runtimeConfiguration) error {
config.lexerATNSimulatorDFADebug = debug
return nil
}
}
// WithParserATNSimulatorDebug sets the global flag indicating whether to log debug information from the parser [ATN]
// simulator. This is useful for debugging parser issues by comparing the output with the Java runtime. Only useful
// to the runtime maintainers.
//
// Use:
//
// antlr.ConfigureRuntime(antlr.WithParserATNSimulatorDebug(true))
//
// You can turn it off at any time using:
//
// antlr.ConfigureRuntime(antlr.WithParserATNSimulatorDebug(false))
func WithParserATNSimulatorDebug(debug bool) runtimeOption {
return func(config *runtimeConfiguration) error {
config.parserATNSimulatorDebug = debug
return nil
}
}
// WithParserATNSimulatorTraceATNSim sets the global flag indicating whether to log trace information from the parser [ATN] simulator
// [DFA]. This is useful for debugging parser issues by comparing the output with the Java runtime. Only useful
// to the runtime maintainers.
//
// Use:
//
// antlr.ConfigureRuntime(antlr.WithParserATNSimulatorTraceATNSim(true))
//
// You can turn it off at any time using:
//
// antlr.ConfigureRuntime(antlr.WithParserATNSimulatorTraceATNSim(false))
func WithParserATNSimulatorTraceATNSim(trace bool) runtimeOption {
return func(config *runtimeConfiguration) error {
config.parserATNSimulatorTraceATNSim = trace
return nil
}
}
// WithParserATNSimulatorDFADebug sets the global flag indicating whether to log debug information from the parser [ATN] [DFA]
// simulator. This is useful for debugging parser issues by comparing the output with the Java runtime. Only useful
// to the runtime maintainers.
//
// Use:
//
// antlr.ConfigureRuntime(antlr.WithParserATNSimulatorDFADebug(true))
//
// You can turn it off at any time using:
//
// antlr.ConfigureRuntime(antlr.WithParserATNSimulatorDFADebug(false))
func WithParserATNSimulatorDFADebug(debug bool) runtimeOption {
return func(config *runtimeConfiguration) error {
config.parserATNSimulatorDFADebug = debug
return nil
}
}
// WithParserATNSimulatorRetryDebug sets the global flag indicating whether to log debug information from the parser [ATN] [DFA]
// simulator when retrying a decision. This is useful for debugging parser issues by comparing the output with the Java runtime.
// Only useful to the runtime maintainers.
//
// Use:
//
// antlr.ConfigureRuntime(antlr.WithParserATNSimulatorRetryDebug(true))
//
// You can turn it off at any time using:
//
// antlr.ConfigureRuntime(antlr.WithParserATNSimulatorRetryDebug(false))
func WithParserATNSimulatorRetryDebug(debug bool) runtimeOption {
return func(config *runtimeConfiguration) error {
config.parserATNSimulatorRetryDebug = debug
return nil
}
}
// WithLRLoopEntryBranchOpt sets the global flag indicating whether let recursive loop operations should be
// optimized or not. This is useful for debugging parser issues by comparing the output with the Java runtime.
// It turns off the functionality of [canDropLoopEntryEdgeInLeftRecursiveRule] in [ParserATNSimulator].
//
// Note that default is to use this optimization.
//
// Use:
//
// antlr.ConfigureRuntime(antlr.WithLRLoopEntryBranchOpt(true))
//
// You can turn it off at any time using:
//
// antlr.ConfigureRuntime(antlr.WithLRLoopEntryBranchOpt(false))
func WithLRLoopEntryBranchOpt(off bool) runtimeOption {
return func(config *runtimeConfiguration) error {
config.lRLoopEntryBranchOpt = off
return nil
}
}
// WithMemoryManager sets the global flag indicating whether to use the memory manager or not. This is useful
// for poorly constructed grammars that create a lot of garbage. It turns on the functionality of [memoryManager], which
// will intercept garbage collection and cause available memory to be reused. At the end of the day, this is no substitute
// for fixing your grammar by ridding yourself of extreme ambiguity. BUt if you are just trying to reuse an opensource
// grammar, this may help make it more practical.
//
// Note that default is to use normal Go memory allocation and not pool memory.
//
// Use:
//
// antlr.ConfigureRuntime(antlr.WithMemoryManager(true))
//
// Note that if you turn this on, you should probably leave it on. You should use only one memory strategy or the other
// and should remember to nil out any references to the parser or lexer when you are done with them.
func WithMemoryManager(use bool) runtimeOption {
return func(config *runtimeConfiguration) error {
config.memoryManager = use
return nil
}
}

View File

@ -4,6 +4,8 @@
package antlr
// DFA represents the Deterministic Finite Automaton used by the recognizer, including all the states it can
// reach and the transitions between them.
type DFA struct {
// atnStartState is the ATN state in which this was created
atnStartState DecisionState
@ -12,10 +14,9 @@ type DFA struct {
// states is all the DFA states. Use Map to get the old state back; Set can only
// indicate whether it is there. Go maps implement key hash collisions and so on and are very
// good, but the DFAState is an object and can't be used directly as the key as it can in say JAva
// good, but the DFAState is an object and can't be used directly as the key as it can in say Java
// amd C#, whereby if the hashcode is the same for two objects, then Equals() is called against them
// to see if they really are the same object.
//
// to see if they really are the same object. Hence, we have our own map storage.
//
states *JStore[*DFAState, *ObjEqComparator[*DFAState]]
@ -32,11 +33,11 @@ func NewDFA(atnStartState DecisionState, decision int) *DFA {
dfa := &DFA{
atnStartState: atnStartState,
decision: decision,
states: NewJStore[*DFAState, *ObjEqComparator[*DFAState]](dfaStateEqInst),
states: nil, // Lazy initialize
}
if s, ok := atnStartState.(*StarLoopEntryState); ok && s.precedenceRuleDecision {
dfa.precedenceDfa = true
dfa.s0 = NewDFAState(-1, NewBaseATNConfigSet(false))
dfa.s0 = NewDFAState(-1, NewATNConfigSet(false))
dfa.s0.isAcceptState = false
dfa.s0.requiresFullContext = false
}
@ -95,12 +96,11 @@ func (d *DFA) getPrecedenceDfa() bool {
// true or nil otherwise, and d.precedenceDfa is updated.
func (d *DFA) setPrecedenceDfa(precedenceDfa bool) {
if d.getPrecedenceDfa() != precedenceDfa {
d.states = NewJStore[*DFAState, *ObjEqComparator[*DFAState]](dfaStateEqInst)
d.states = nil // Lazy initialize
d.numstates = 0
if precedenceDfa {
precedenceState := NewDFAState(-1, NewBaseATNConfigSet(false))
precedenceState := NewDFAState(-1, NewATNConfigSet(false))
precedenceState.setEdges(make([]*DFAState, 0))
precedenceState.isAcceptState = false
precedenceState.requiresFullContext = false
@ -113,6 +113,31 @@ func (d *DFA) setPrecedenceDfa(precedenceDfa bool) {
}
}
// Len returns the number of states in d. We use this instead of accessing states directly so that we can implement lazy
// instantiation of the states JMap.
func (d *DFA) Len() int {
if d.states == nil {
return 0
}
return d.states.Len()
}
// Get returns a state that matches s if it is present in the DFA state set. We defer to this
// function instead of accessing states directly so that we can implement lazy instantiation of the states JMap.
func (d *DFA) Get(s *DFAState) (*DFAState, bool) {
if d.states == nil {
return nil, false
}
return d.states.Get(s)
}
func (d *DFA) Put(s *DFAState) (*DFAState, bool) {
if d.states == nil {
d.states = NewJStore[*DFAState, *ObjEqComparator[*DFAState]](dfaStateEqInst, DFAStateCollection, "DFA via DFA.Put")
}
return d.states.Put(s)
}
func (d *DFA) getS0() *DFAState {
return d.s0
}
@ -121,9 +146,11 @@ func (d *DFA) setS0(s *DFAState) {
d.s0 = s
}
// sortedStates returns the states in d sorted by their state number.
// sortedStates returns the states in d sorted by their state number, or an empty set if d.states is nil.
func (d *DFA) sortedStates() []*DFAState {
if d.states == nil {
return []*DFAState{}
}
vs := d.states.SortedSlice(func(i, j *DFAState) bool {
return i.stateNumber < j.stateNumber
})

View File

@ -10,7 +10,7 @@ import (
"strings"
)
// DFASerializer is a DFA walker that knows how to dump them to serialized
// DFASerializer is a DFA walker that knows how to dump the DFA states to serialized
// strings.
type DFASerializer struct {
dfa *DFA

View File

@ -22,30 +22,31 @@ func (p *PredPrediction) String() string {
return "(" + fmt.Sprint(p.pred) + ", " + fmt.Sprint(p.alt) + ")"
}
// DFAState represents a set of possible ATN configurations. As Aho, Sethi,
// DFAState represents a set of possible [ATN] configurations. As Aho, Sethi,
// Ullman p. 117 says: "The DFA uses its state to keep track of all possible
// states the ATN can be in after reading each input symbol. That is to say,
// after reading input a1a2..an, the DFA is in a state that represents the
// after reading input a1, a2,..an, the DFA is in a state that represents the
// subset T of the states of the ATN that are reachable from the ATN's start
// state along some path labeled a1a2..an." In conventional NFA-to-DFA
// conversion, therefore, the subset T would be a bitset representing the set of
// states the ATN could be in. We need to track the alt predicted by each state
// state along some path labeled a1a2..an."
//
// In conventional NFA-to-DFA conversion, therefore, the subset T would be a bitset representing the set of
// states the [ATN] could be in. We need to track the alt predicted by each state
// as well, however. More importantly, we need to maintain a stack of states,
// tracking the closure operations as they jump from rule to rule, emulating
// rule invocations (method calls). I have to add a stack to simulate the proper
// lookahead sequences for the underlying LL grammar from which the ATN was
// derived.
//
// I use a set of ATNConfig objects, not simple states. An ATNConfig is both a
// state (ala normal conversion) and a RuleContext describing the chain of rules
// I use a set of [ATNConfig] objects, not simple states. An [ATNConfig] is both a
// state (ala normal conversion) and a [RuleContext] describing the chain of rules
// (if any) followed to arrive at that state.
//
// A DFAState may have multiple references to a particular state, but with
// different ATN contexts (with same or different alts) meaning that state was
// A [DFAState] may have multiple references to a particular state, but with
// different [ATN] contexts (with same or different alts) meaning that state was
// reached via a different set of rule invocations.
type DFAState struct {
stateNumber int
configs ATNConfigSet
configs *ATNConfigSet
// edges elements point to the target of the symbol. Shift up by 1 so (-1)
// Token.EOF maps to the first element.
@ -53,7 +54,7 @@ type DFAState struct {
isAcceptState bool
// prediction is the ttype we match or alt we predict if the state is accept.
// prediction is the 'ttype' we match or alt we predict if the state is 'accept'.
// Set to ATN.INVALID_ALT_NUMBER when predicates != nil or
// requiresFullContext.
prediction int
@ -81,9 +82,9 @@ type DFAState struct {
predicates []*PredPrediction
}
func NewDFAState(stateNumber int, configs ATNConfigSet) *DFAState {
func NewDFAState(stateNumber int, configs *ATNConfigSet) *DFAState {
if configs == nil {
configs = NewBaseATNConfigSet(false)
configs = NewATNConfigSet(false)
}
return &DFAState{configs: configs, stateNumber: stateNumber}
@ -94,7 +95,7 @@ func (d *DFAState) GetAltSet() []int {
var alts []int
if d.configs != nil {
for _, c := range d.configs.GetItems() {
for _, c := range d.configs.configs {
alts = append(alts, c.GetAlt())
}
}

View File

@ -33,6 +33,7 @@ type DiagnosticErrorListener struct {
exactOnly bool
}
//goland:noinspection GoUnusedExportedFunction
func NewDiagnosticErrorListener(exactOnly bool) *DiagnosticErrorListener {
n := new(DiagnosticErrorListener)
@ -42,7 +43,7 @@ func NewDiagnosticErrorListener(exactOnly bool) *DiagnosticErrorListener {
return n
}
func (d *DiagnosticErrorListener) ReportAmbiguity(recognizer Parser, dfa *DFA, startIndex, stopIndex int, exact bool, ambigAlts *BitSet, configs ATNConfigSet) {
func (d *DiagnosticErrorListener) ReportAmbiguity(recognizer Parser, dfa *DFA, startIndex, stopIndex int, exact bool, ambigAlts *BitSet, configs *ATNConfigSet) {
if d.exactOnly && !exact {
return
}
@ -55,7 +56,7 @@ func (d *DiagnosticErrorListener) ReportAmbiguity(recognizer Parser, dfa *DFA, s
recognizer.NotifyErrorListeners(msg, nil, nil)
}
func (d *DiagnosticErrorListener) ReportAttemptingFullContext(recognizer Parser, dfa *DFA, startIndex, stopIndex int, conflictingAlts *BitSet, configs ATNConfigSet) {
func (d *DiagnosticErrorListener) ReportAttemptingFullContext(recognizer Parser, dfa *DFA, startIndex, stopIndex int, _ *BitSet, _ *ATNConfigSet) {
msg := "reportAttemptingFullContext d=" +
d.getDecisionDescription(recognizer, dfa) +
@ -64,7 +65,7 @@ func (d *DiagnosticErrorListener) ReportAttemptingFullContext(recognizer Parser,
recognizer.NotifyErrorListeners(msg, nil, nil)
}
func (d *DiagnosticErrorListener) ReportContextSensitivity(recognizer Parser, dfa *DFA, startIndex, stopIndex, prediction int, configs ATNConfigSet) {
func (d *DiagnosticErrorListener) ReportContextSensitivity(recognizer Parser, dfa *DFA, startIndex, stopIndex, _ int, _ *ATNConfigSet) {
msg := "reportContextSensitivity d=" +
d.getDecisionDescription(recognizer, dfa) +
", input='" +
@ -96,12 +97,12 @@ func (d *DiagnosticErrorListener) getDecisionDescription(recognizer Parser, dfa
// @param configs The conflicting or ambiguous configuration set.
// @return Returns {@code ReportedAlts} if it is not {@code nil}, otherwise
// returns the set of alternatives represented in {@code configs}.
func (d *DiagnosticErrorListener) getConflictingAlts(ReportedAlts *BitSet, set ATNConfigSet) *BitSet {
func (d *DiagnosticErrorListener) getConflictingAlts(ReportedAlts *BitSet, set *ATNConfigSet) *BitSet {
if ReportedAlts != nil {
return ReportedAlts
}
result := NewBitSet()
for _, c := range set.GetItems() {
for _, c := range set.configs {
result.add(c.GetAlt())
}

View File

@ -16,28 +16,29 @@ import (
type ErrorListener interface {
SyntaxError(recognizer Recognizer, offendingSymbol interface{}, line, column int, msg string, e RecognitionException)
ReportAmbiguity(recognizer Parser, dfa *DFA, startIndex, stopIndex int, exact bool, ambigAlts *BitSet, configs ATNConfigSet)
ReportAttemptingFullContext(recognizer Parser, dfa *DFA, startIndex, stopIndex int, conflictingAlts *BitSet, configs ATNConfigSet)
ReportContextSensitivity(recognizer Parser, dfa *DFA, startIndex, stopIndex, prediction int, configs ATNConfigSet)
ReportAmbiguity(recognizer Parser, dfa *DFA, startIndex, stopIndex int, exact bool, ambigAlts *BitSet, configs *ATNConfigSet)
ReportAttemptingFullContext(recognizer Parser, dfa *DFA, startIndex, stopIndex int, conflictingAlts *BitSet, configs *ATNConfigSet)
ReportContextSensitivity(recognizer Parser, dfa *DFA, startIndex, stopIndex, prediction int, configs *ATNConfigSet)
}
type DefaultErrorListener struct {
}
//goland:noinspection GoUnusedExportedFunction
func NewDefaultErrorListener() *DefaultErrorListener {
return new(DefaultErrorListener)
}
func (d *DefaultErrorListener) SyntaxError(recognizer Recognizer, offendingSymbol interface{}, line, column int, msg string, e RecognitionException) {
func (d *DefaultErrorListener) SyntaxError(_ Recognizer, _ interface{}, _, _ int, _ string, _ RecognitionException) {
}
func (d *DefaultErrorListener) ReportAmbiguity(recognizer Parser, dfa *DFA, startIndex, stopIndex int, exact bool, ambigAlts *BitSet, configs ATNConfigSet) {
func (d *DefaultErrorListener) ReportAmbiguity(_ Parser, _ *DFA, _, _ int, _ bool, _ *BitSet, _ *ATNConfigSet) {
}
func (d *DefaultErrorListener) ReportAttemptingFullContext(recognizer Parser, dfa *DFA, startIndex, stopIndex int, conflictingAlts *BitSet, configs ATNConfigSet) {
func (d *DefaultErrorListener) ReportAttemptingFullContext(_ Parser, _ *DFA, _, _ int, _ *BitSet, _ *ATNConfigSet) {
}
func (d *DefaultErrorListener) ReportContextSensitivity(recognizer Parser, dfa *DFA, startIndex, stopIndex, prediction int, configs ATNConfigSet) {
func (d *DefaultErrorListener) ReportContextSensitivity(_ Parser, _ *DFA, _, _, _ int, _ *ATNConfigSet) {
}
type ConsoleErrorListener struct {
@ -48,21 +49,16 @@ func NewConsoleErrorListener() *ConsoleErrorListener {
return new(ConsoleErrorListener)
}
// Provides a default instance of {@link ConsoleErrorListener}.
// ConsoleErrorListenerINSTANCE provides a default instance of {@link ConsoleErrorListener}.
var ConsoleErrorListenerINSTANCE = NewConsoleErrorListener()
// {@inheritDoc}
// SyntaxError prints messages to System.err containing the
// values of line, charPositionInLine, and msg using
// the following format:
//
// <p>
// This implementation prints messages to {@link System//err} containing the
// values of {@code line}, {@code charPositionInLine}, and {@code msg} using
// the following format.</p>
//
// <pre>
// line <em>line</em>:<em>charPositionInLine</em> <em>msg</em>
// </pre>
func (c *ConsoleErrorListener) SyntaxError(recognizer Recognizer, offendingSymbol interface{}, line, column int, msg string, e RecognitionException) {
fmt.Fprintln(os.Stderr, "line "+strconv.Itoa(line)+":"+strconv.Itoa(column)+" "+msg)
// line <line>:<charPositionInLine> <msg>
func (c *ConsoleErrorListener) SyntaxError(_ Recognizer, _ interface{}, line, column int, msg string, _ RecognitionException) {
_, _ = fmt.Fprintln(os.Stderr, "line "+strconv.Itoa(line)+":"+strconv.Itoa(column)+" "+msg)
}
type ProxyErrorListener struct {
@ -85,19 +81,19 @@ func (p *ProxyErrorListener) SyntaxError(recognizer Recognizer, offendingSymbol
}
}
func (p *ProxyErrorListener) ReportAmbiguity(recognizer Parser, dfa *DFA, startIndex, stopIndex int, exact bool, ambigAlts *BitSet, configs ATNConfigSet) {
func (p *ProxyErrorListener) ReportAmbiguity(recognizer Parser, dfa *DFA, startIndex, stopIndex int, exact bool, ambigAlts *BitSet, configs *ATNConfigSet) {
for _, d := range p.delegates {
d.ReportAmbiguity(recognizer, dfa, startIndex, stopIndex, exact, ambigAlts, configs)
}
}
func (p *ProxyErrorListener) ReportAttemptingFullContext(recognizer Parser, dfa *DFA, startIndex, stopIndex int, conflictingAlts *BitSet, configs ATNConfigSet) {
func (p *ProxyErrorListener) ReportAttemptingFullContext(recognizer Parser, dfa *DFA, startIndex, stopIndex int, conflictingAlts *BitSet, configs *ATNConfigSet) {
for _, d := range p.delegates {
d.ReportAttemptingFullContext(recognizer, dfa, startIndex, stopIndex, conflictingAlts, configs)
}
}
func (p *ProxyErrorListener) ReportContextSensitivity(recognizer Parser, dfa *DFA, startIndex, stopIndex, prediction int, configs ATNConfigSet) {
func (p *ProxyErrorListener) ReportContextSensitivity(recognizer Parser, dfa *DFA, startIndex, stopIndex, prediction int, configs *ATNConfigSet) {
for _, d := range p.delegates {
d.ReportContextSensitivity(recognizer, dfa, startIndex, stopIndex, prediction, configs)
}

View File

@ -21,8 +21,8 @@ type ErrorStrategy interface {
ReportMatch(Parser)
}
// This is the default implementation of {@link ANTLRErrorStrategy} used for
// error Reporting and recovery in ANTLR parsers.
// DefaultErrorStrategy is the default implementation of ANTLRErrorStrategy used for
// error reporting and recovery in ANTLR parsers.
type DefaultErrorStrategy struct {
errorRecoveryMode bool
lastErrorIndex int
@ -46,7 +46,7 @@ func NewDefaultErrorStrategy() *DefaultErrorStrategy {
// The index into the input stream where the last error occurred.
// This is used to prevent infinite loops where an error is found
// but no token is consumed during recovery...another error is found,
// ad nauseum. This is a failsafe mechanism to guarantee that at least
// ad nauseam. This is a failsafe mechanism to guarantee that at least
// one token/tree node is consumed for two errors.
//
d.lastErrorIndex = -1
@ -62,50 +62,37 @@ func (d *DefaultErrorStrategy) reset(recognizer Parser) {
// This method is called to enter error recovery mode when a recognition
// exception is Reported.
//
// @param recognizer the parser instance
func (d *DefaultErrorStrategy) beginErrorCondition(recognizer Parser) {
func (d *DefaultErrorStrategy) beginErrorCondition(_ Parser) {
d.errorRecoveryMode = true
}
func (d *DefaultErrorStrategy) InErrorRecoveryMode(recognizer Parser) bool {
func (d *DefaultErrorStrategy) InErrorRecoveryMode(_ Parser) bool {
return d.errorRecoveryMode
}
// This method is called to leave error recovery mode after recovering from
// a recognition exception.
//
// @param recognizer
func (d *DefaultErrorStrategy) endErrorCondition(recognizer Parser) {
func (d *DefaultErrorStrategy) endErrorCondition(_ Parser) {
d.errorRecoveryMode = false
d.lastErrorStates = nil
d.lastErrorIndex = -1
}
// {@inheritDoc}
//
// <p>The default implementation simply calls {@link //endErrorCondition}.</p>
// ReportMatch is the default implementation of error matching and simply calls endErrorCondition.
func (d *DefaultErrorStrategy) ReportMatch(recognizer Parser) {
d.endErrorCondition(recognizer)
}
// {@inheritDoc}
// ReportError is the default implementation of error reporting.
// It returns immediately if the handler is already
// in error recovery mode. Otherwise, it calls [beginErrorCondition]
// and dispatches the Reporting task based on the runtime type of e
// according to the following table.
//
// <p>The default implementation returns immediately if the handler is already
// in error recovery mode. Otherwise, it calls {@link //beginErrorCondition}
// and dispatches the Reporting task based on the runtime type of {@code e}
// according to the following table.</p>
//
// <ul>
// <li>{@link NoViableAltException}: Dispatches the call to
// {@link //ReportNoViableAlternative}</li>
// <li>{@link InputMisMatchException}: Dispatches the call to
// {@link //ReportInputMisMatch}</li>
// <li>{@link FailedPredicateException}: Dispatches the call to
// {@link //ReportFailedPredicate}</li>
// <li>All other types: calls {@link Parser//NotifyErrorListeners} to Report
// the exception</li>
// </ul>
// [NoViableAltException] : Dispatches the call to [ReportNoViableAlternative]
// [InputMisMatchException] : Dispatches the call to [ReportInputMisMatch]
// [FailedPredicateException] : Dispatches the call to [ReportFailedPredicate]
// All other types : Calls [NotifyErrorListeners] to Report the exception
func (d *DefaultErrorStrategy) ReportError(recognizer Parser, e RecognitionException) {
// if we've already Reported an error and have not Matched a token
// yet successfully, don't Report any errors.
@ -128,12 +115,10 @@ func (d *DefaultErrorStrategy) ReportError(recognizer Parser, e RecognitionExcep
}
}
// {@inheritDoc}
//
// <p>The default implementation reSynchronizes the parser by consuming tokens
// until we find one in the reSynchronization set--loosely the set of tokens
// that can follow the current rule.</p>
func (d *DefaultErrorStrategy) Recover(recognizer Parser, e RecognitionException) {
// Recover is the default recovery implementation.
// It reSynchronizes the parser by consuming tokens until we find one in the reSynchronization set -
// loosely the set of tokens that can follow the current rule.
func (d *DefaultErrorStrategy) Recover(recognizer Parser, _ RecognitionException) {
if d.lastErrorIndex == recognizer.GetInputStream().Index() &&
d.lastErrorStates != nil && d.lastErrorStates.contains(recognizer.GetState()) {
@ -148,54 +133,58 @@ func (d *DefaultErrorStrategy) Recover(recognizer Parser, e RecognitionException
d.lastErrorStates = NewIntervalSet()
}
d.lastErrorStates.addOne(recognizer.GetState())
followSet := d.getErrorRecoverySet(recognizer)
followSet := d.GetErrorRecoverySet(recognizer)
d.consumeUntil(recognizer, followSet)
}
// The default implementation of {@link ANTLRErrorStrategy//Sync} makes sure
// that the current lookahead symbol is consistent with what were expecting
// at d point in the ATN. You can call d anytime but ANTLR only
// generates code to check before subrules/loops and each iteration.
// Sync is the default implementation of error strategy synchronization.
//
// <p>Implements Jim Idle's magic Sync mechanism in closures and optional
// subrules. E.g.,</p>
// This Sync makes sure that the current lookahead symbol is consistent with what were expecting
// at this point in the [ATN]. You can call this anytime but ANTLR only
// generates code to check before sub-rules/loops and each iteration.
//
// <pre>
// a : Sync ( stuff Sync )*
// Sync : {consume to what can follow Sync}
// </pre>
// Implements [Jim Idle]'s magic Sync mechanism in closures and optional
// sub-rules. E.g.:
//
// At the start of a sub rule upon error, {@link //Sync} performs single
// a : Sync ( stuff Sync )*
// Sync : {consume to what can follow Sync}
//
// At the start of a sub-rule upon error, Sync performs single
// token deletion, if possible. If it can't do that, it bails on the current
// rule and uses the default error recovery, which consumes until the
// reSynchronization set of the current rule.
//
// <p>If the sub rule is optional ({@code (...)?}, {@code (...)*}, or block
// with an empty alternative), then the expected set includes what follows
// the subrule.</p>
// If the sub-rule is optional
//
// <p>During loop iteration, it consumes until it sees a token that can start a
// sub rule or what follows loop. Yes, that is pretty aggressive. We opt to
// stay in the loop as long as possible.</p>
// ({@code (...)?}, {@code (...)*},
//
// <p><strong>ORIGINS</strong></p>
// or a block with an empty alternative), then the expected set includes what follows
// the sub-rule.
//
// <p>Previous versions of ANTLR did a poor job of their recovery within loops.
// During loop iteration, it consumes until it sees a token that can start a
// sub-rule or what follows loop. Yes, that is pretty aggressive. We opt to
// stay in the loop as long as possible.
//
// # Origins
//
// Previous versions of ANTLR did a poor job of their recovery within loops.
// A single mismatch token or missing token would force the parser to bail
// out of the entire rules surrounding the loop. So, for rule</p>
// out of the entire rules surrounding the loop. So, for rule:
//
// <pre>
// classfunc : 'class' ID '{' member* '}'
// </pre>
// classfunc : 'class' ID '{' member* '}'
//
// input with an extra token between members would force the parser to
// consume until it found the next class definition rather than the next
// member definition of the current class.
//
// <p>This functionality cost a little bit of effort because the parser has to
// compare token set at the start of the loop and at each iteration. If for
// some reason speed is suffering for you, you can turn off d
// functionality by simply overriding d method as a blank { }.</p>
// This functionality cost a bit of effort because the parser has to
// compare the token set at the start of the loop and at each iteration. If for
// some reason speed is suffering for you, you can turn off this
// functionality by simply overriding this method as empty:
//
// { }
//
// [Jim Idle]: https://github.com/jimidle
func (d *DefaultErrorStrategy) Sync(recognizer Parser) {
// If already recovering, don't try to Sync
if d.InErrorRecoveryMode(recognizer) {
@ -217,25 +206,21 @@ func (d *DefaultErrorStrategy) Sync(recognizer Parser) {
if d.SingleTokenDeletion(recognizer) != nil {
return
}
panic(NewInputMisMatchException(recognizer))
recognizer.SetError(NewInputMisMatchException(recognizer))
case ATNStatePlusLoopBack, ATNStateStarLoopBack:
d.ReportUnwantedToken(recognizer)
expecting := NewIntervalSet()
expecting.addSet(recognizer.GetExpectedTokens())
whatFollowsLoopIterationOrRule := expecting.addSet(d.getErrorRecoverySet(recognizer))
whatFollowsLoopIterationOrRule := expecting.addSet(d.GetErrorRecoverySet(recognizer))
d.consumeUntil(recognizer, whatFollowsLoopIterationOrRule)
default:
// do nothing if we can't identify the exact kind of ATN state
}
}
// This is called by {@link //ReportError} when the exception is a
// {@link NoViableAltException}.
// ReportNoViableAlternative is called by [ReportError] when the exception is a [NoViableAltException].
//
// @see //ReportError
//
// @param recognizer the parser instance
// @param e the recognition exception
// See also [ReportError]
func (d *DefaultErrorStrategy) ReportNoViableAlternative(recognizer Parser, e *NoViableAltException) {
tokens := recognizer.GetTokenStream()
var input string
@ -252,48 +237,38 @@ func (d *DefaultErrorStrategy) ReportNoViableAlternative(recognizer Parser, e *N
recognizer.NotifyErrorListeners(msg, e.offendingToken, e)
}
// This is called by {@link //ReportError} when the exception is an
// {@link InputMisMatchException}.
// ReportInputMisMatch is called by [ReportError] when the exception is an [InputMisMatchException]
//
// @see //ReportError
//
// @param recognizer the parser instance
// @param e the recognition exception
func (this *DefaultErrorStrategy) ReportInputMisMatch(recognizer Parser, e *InputMisMatchException) {
msg := "mismatched input " + this.GetTokenErrorDisplay(e.offendingToken) +
// See also: [ReportError]
func (d *DefaultErrorStrategy) ReportInputMisMatch(recognizer Parser, e *InputMisMatchException) {
msg := "mismatched input " + d.GetTokenErrorDisplay(e.offendingToken) +
" expecting " + e.getExpectedTokens().StringVerbose(recognizer.GetLiteralNames(), recognizer.GetSymbolicNames(), false)
recognizer.NotifyErrorListeners(msg, e.offendingToken, e)
}
// This is called by {@link //ReportError} when the exception is a
// {@link FailedPredicateException}.
// ReportFailedPredicate is called by [ReportError] when the exception is a [FailedPredicateException].
//
// @see //ReportError
//
// @param recognizer the parser instance
// @param e the recognition exception
// See also: [ReportError]
func (d *DefaultErrorStrategy) ReportFailedPredicate(recognizer Parser, e *FailedPredicateException) {
ruleName := recognizer.GetRuleNames()[recognizer.GetParserRuleContext().GetRuleIndex()]
msg := "rule " + ruleName + " " + e.message
recognizer.NotifyErrorListeners(msg, e.offendingToken, e)
}
// This method is called to Report a syntax error which requires the removal
// ReportUnwantedToken is called to report a syntax error that requires the removal
// of a token from the input stream. At the time d method is called, the
// erroneous symbol is current {@code LT(1)} symbol and has not yet been
// removed from the input stream. When d method returns,
// {@code recognizer} is in error recovery mode.
// erroneous symbol is the current LT(1) symbol and has not yet been
// removed from the input stream. When this method returns,
// recognizer is in error recovery mode.
//
// <p>This method is called when {@link //singleTokenDeletion} identifies
// This method is called when singleTokenDeletion identifies
// single-token deletion as a viable recovery strategy for a mismatched
// input error.</p>
// input error.
//
// <p>The default implementation simply returns if the handler is already in
// error recovery mode. Otherwise, it calls {@link //beginErrorCondition} to
// The default implementation simply returns if the handler is already in
// error recovery mode. Otherwise, it calls beginErrorCondition to
// enter error recovery mode, followed by calling
// {@link Parser//NotifyErrorListeners}.</p>
//
// @param recognizer the parser instance
// [NotifyErrorListeners]
func (d *DefaultErrorStrategy) ReportUnwantedToken(recognizer Parser) {
if d.InErrorRecoveryMode(recognizer) {
return
@ -307,21 +282,18 @@ func (d *DefaultErrorStrategy) ReportUnwantedToken(recognizer Parser) {
recognizer.NotifyErrorListeners(msg, t, nil)
}
// This method is called to Report a syntax error which requires the
// insertion of a missing token into the input stream. At the time d
// method is called, the missing token has not yet been inserted. When d
// method returns, {@code recognizer} is in error recovery mode.
// ReportMissingToken is called to report a syntax error which requires the
// insertion of a missing token into the input stream. At the time this
// method is called, the missing token has not yet been inserted. When this
// method returns, recognizer is in error recovery mode.
//
// <p>This method is called when {@link //singleTokenInsertion} identifies
// This method is called when singleTokenInsertion identifies
// single-token insertion as a viable recovery strategy for a mismatched
// input error.</p>
// input error.
//
// <p>The default implementation simply returns if the handler is already in
// error recovery mode. Otherwise, it calls {@link //beginErrorCondition} to
// enter error recovery mode, followed by calling
// {@link Parser//NotifyErrorListeners}.</p>
//
// @param recognizer the parser instance
// The default implementation simply returns if the handler is already in
// error recovery mode. Otherwise, it calls beginErrorCondition to
// enter error recovery mode, followed by calling [NotifyErrorListeners]
func (d *DefaultErrorStrategy) ReportMissingToken(recognizer Parser) {
if d.InErrorRecoveryMode(recognizer) {
return
@ -334,54 +306,48 @@ func (d *DefaultErrorStrategy) ReportMissingToken(recognizer Parser) {
recognizer.NotifyErrorListeners(msg, t, nil)
}
// <p>The default implementation attempts to recover from the mismatched input
// The RecoverInline default implementation attempts to recover from the mismatched input
// by using single token insertion and deletion as described below. If the
// recovery attempt fails, d method panics an
// {@link InputMisMatchException}.</p>
// recovery attempt fails, this method panics with [InputMisMatchException}.
// TODO: Not sure that panic() is the right thing to do here - JI
//
// <p><strong>EXTRA TOKEN</strong> (single token deletion)</p>
// # EXTRA TOKEN (single token deletion)
//
// <p>{@code LA(1)} is not what we are looking for. If {@code LA(2)} has the
// right token, however, then assume {@code LA(1)} is some extra spurious
// LA(1) is not what we are looking for. If LA(2) has the
// right token, however, then assume LA(1) is some extra spurious
// token and delete it. Then consume and return the next token (which was
// the {@code LA(2)} token) as the successful result of the Match operation.</p>
// the LA(2) token) as the successful result of the Match operation.
//
// <p>This recovery strategy is implemented by {@link
// //singleTokenDeletion}.</p>
// # This recovery strategy is implemented by singleTokenDeletion
//
// <p><strong>MISSING TOKEN</strong> (single token insertion)</p>
// # MISSING TOKEN (single token insertion)
//
// <p>If current token (at {@code LA(1)}) is consistent with what could come
// after the expected {@code LA(1)} token, then assume the token is missing
// and use the parser's {@link TokenFactory} to create it on the fly. The
// "insertion" is performed by returning the created token as the successful
// result of the Match operation.</p>
// If current token -at LA(1) - is consistent with what could come
// after the expected LA(1) token, then assume the token is missing
// and use the parser's [TokenFactory] to create it on the fly. The
// “insertion” is performed by returning the created token as the successful
// result of the Match operation.
//
// <p>This recovery strategy is implemented by {@link
// //singleTokenInsertion}.</p>
// This recovery strategy is implemented by [SingleTokenInsertion].
//
// <p><strong>EXAMPLE</strong></p>
// # Example
//
// <p>For example, Input {@code i=(3} is clearly missing the {@code ')'}. When
// the parser returns from the nested call to {@code expr}, it will have
// call chain:</p>
// For example, Input i=(3 is clearly missing the ')'. When
// the parser returns from the nested call to expr, it will have
// call the chain:
//
// <pre>
// stat &rarr expr &rarr atom
// </pre>
// stat → expr → atom
//
// and it will be trying to Match the {@code ')'} at d point in the
// and it will be trying to Match the ')' at this point in the
// derivation:
//
// <pre>
// =&gt ID '=' '(' INT ')' ('+' atom)* ”
// ^
// </pre>
// : ID '=' '(' INT ')' ('+' atom)* ';'
// ^
//
// The attempt to Match {@code ')'} will fail when it sees {@code ”} and
// call {@link //recoverInline}. To recover, it sees that {@code LA(1)==”}
// is in the set of tokens that can follow the {@code ')'} token reference
// in rule {@code atom}. It can assume that you forgot the {@code ')'}.
// The attempt to [Match] ')' will fail when it sees ';' and
// call [RecoverInline]. To recover, it sees that LA(1)==';'
// is in the set of tokens that can follow the ')' token reference
// in rule atom. It can assume that you forgot the ')'.
func (d *DefaultErrorStrategy) RecoverInline(recognizer Parser) Token {
// SINGLE TOKEN DELETION
MatchedSymbol := d.SingleTokenDeletion(recognizer)
@ -396,24 +362,24 @@ func (d *DefaultErrorStrategy) RecoverInline(recognizer Parser) Token {
return d.GetMissingSymbol(recognizer)
}
// even that didn't work must panic the exception
panic(NewInputMisMatchException(recognizer))
recognizer.SetError(NewInputMisMatchException(recognizer))
return nil
}
// This method implements the single-token insertion inline error recovery
// strategy. It is called by {@link //recoverInline} if the single-token
// SingleTokenInsertion implements the single-token insertion inline error recovery
// strategy. It is called by [RecoverInline] if the single-token
// deletion strategy fails to recover from the mismatched input. If this
// method returns {@code true}, {@code recognizer} will be in error recovery
// mode.
//
// <p>This method determines whether or not single-token insertion is viable by
// checking if the {@code LA(1)} input symbol could be successfully Matched
// if it were instead the {@code LA(2)} symbol. If d method returns
// This method determines whether single-token insertion is viable by
// checking if the LA(1) input symbol could be successfully Matched
// if it were instead the LA(2) symbol. If this method returns
// {@code true}, the caller is responsible for creating and inserting a
// token with the correct type to produce d behavior.</p>
// token with the correct type to produce this behavior.</p>
//
// @param recognizer the parser instance
// @return {@code true} if single-token insertion is a viable recovery
// strategy for the current mismatched input, otherwise {@code false}
// This func returns true if single-token insertion is a viable recovery
// strategy for the current mismatched input.
func (d *DefaultErrorStrategy) SingleTokenInsertion(recognizer Parser) bool {
currentSymbolType := recognizer.GetTokenStream().LA(1)
// if current token is consistent with what could come after current
@ -431,23 +397,21 @@ func (d *DefaultErrorStrategy) SingleTokenInsertion(recognizer Parser) bool {
return false
}
// This method implements the single-token deletion inline error recovery
// strategy. It is called by {@link //recoverInline} to attempt to recover
// SingleTokenDeletion implements the single-token deletion inline error recovery
// strategy. It is called by [RecoverInline] to attempt to recover
// from mismatched input. If this method returns nil, the parser and error
// handler state will not have changed. If this method returns non-nil,
// {@code recognizer} will <em>not</em> be in error recovery mode since the
// recognizer will not be in error recovery mode since the
// returned token was a successful Match.
//
// <p>If the single-token deletion is successful, d method calls
// {@link //ReportUnwantedToken} to Report the error, followed by
// {@link Parser//consume} to actually "delete" the extraneous token. Then,
// before returning {@link //ReportMatch} is called to signal a successful
// Match.</p>
// If the single-token deletion is successful, this method calls
// [ReportUnwantedToken] to Report the error, followed by
// [Consume] to actually “delete” the extraneous token. Then,
// before returning, [ReportMatch] is called to signal a successful
// Match.
//
// @param recognizer the parser instance
// @return the successfully Matched {@link Token} instance if single-token
// deletion successfully recovers from the mismatched input, otherwise
// {@code nil}
// The func returns the successfully Matched [Token] instance if single-token
// deletion successfully recovers from the mismatched input, otherwise nil.
func (d *DefaultErrorStrategy) SingleTokenDeletion(recognizer Parser) Token {
NextTokenType := recognizer.GetTokenStream().LA(2)
expecting := d.GetExpectedTokens(recognizer)
@ -467,24 +431,28 @@ func (d *DefaultErrorStrategy) SingleTokenDeletion(recognizer Parser) Token {
return nil
}
// Conjure up a missing token during error recovery.
// GetMissingSymbol conjures up a missing token during error recovery.
//
// The recognizer attempts to recover from single missing
// symbols. But, actions might refer to that missing symbol.
// For example, x=ID {f($x)}. The action clearly assumes
// For example:
//
// x=ID {f($x)}.
//
// The action clearly assumes
// that there has been an identifier Matched previously and that
// $x points at that token. If that token is missing, but
// the next token in the stream is what we want we assume that
// d token is missing and we keep going. Because we
// this token is missing, and we keep going. Because we
// have to return some token to replace the missing token,
// we have to conjure one up. This method gives the user control
// over the tokens returned for missing tokens. Mostly,
// you will want to create something special for identifier
// tokens. For literals such as '{' and ',', the default
// action in the parser or tree parser works. It simply creates
// a CommonToken of the appropriate type. The text will be the token.
// If you change what tokens must be created by the lexer,
// override d method to create the appropriate tokens.
// a [CommonToken] of the appropriate type. The text will be the token name.
// If you need to change which tokens must be created by the lexer,
// override this method to create the appropriate tokens.
func (d *DefaultErrorStrategy) GetMissingSymbol(recognizer Parser) Token {
currentSymbol := recognizer.GetCurrentToken()
expecting := d.GetExpectedTokens(recognizer)
@ -498,7 +466,7 @@ func (d *DefaultErrorStrategy) GetMissingSymbol(recognizer Parser) Token {
if expectedTokenType > 0 && expectedTokenType < len(ln) {
tokenText = "<missing " + recognizer.GetLiteralNames()[expectedTokenType] + ">"
} else {
tokenText = "<missing undefined>" // TODO matches the JS impl
tokenText = "<missing undefined>" // TODO: matches the JS impl
}
}
current := currentSymbol
@ -516,13 +484,13 @@ func (d *DefaultErrorStrategy) GetExpectedTokens(recognizer Parser) *IntervalSet
return recognizer.GetExpectedTokens()
}
// How should a token be displayed in an error message? The default
// is to display just the text, but during development you might
// want to have a lot of information spit out. Override in that case
// to use t.String() (which, for CommonToken, dumps everything about
// GetTokenErrorDisplay determines how a token should be displayed in an error message.
// The default is to display just the text, but during development you might
// want to have a lot of information spit out. Override this func in that case
// to use t.String() (which, for [CommonToken], dumps everything about
// the token). This is better than forcing you to override a method in
// your token objects because you don't have to go modify your lexer
// so that it creates a NewJava type.
// so that it creates a new type.
func (d *DefaultErrorStrategy) GetTokenErrorDisplay(t Token) string {
if t == nil {
return "<no token>"
@ -545,52 +513,57 @@ func (d *DefaultErrorStrategy) escapeWSAndQuote(s string) string {
return "'" + s + "'"
}
// Compute the error recovery set for the current rule. During
// GetErrorRecoverySet computes the error recovery set for the current rule. During
// rule invocation, the parser pushes the set of tokens that can
// follow that rule reference on the stack d amounts to
// follow that rule reference on the stack. This amounts to
// computing FIRST of what follows the rule reference in the
// enclosing rule. See LinearApproximator.FIRST().
//
// This local follow set only includes tokens
// from within the rule i.e., the FIRST computation done by
// ANTLR stops at the end of a rule.
//
// # EXAMPLE
// # Example
//
// When you find a "no viable alt exception", the input is not
// consistent with any of the alternatives for rule r. The best
// thing to do is to consume tokens until you see something that
// can legally follow a call to r//or* any rule that called r.
// can legally follow a call to r or any rule that called r.
// You don't want the exact set of viable next tokens because the
// input might just be missing a token--you might consume the
// rest of the input looking for one of the missing tokens.
//
// Consider grammar:
// Consider the grammar:
//
// a : '[' b ']'
// | '(' b ')'
// a : '[' b ']'
// | '(' b ')'
// ;
//
// b : c '^' INT
// c : ID
// | INT
// b : c '^' INT
// ;
//
// c : ID
// | INT
// ;
//
// At each rule invocation, the set of tokens that could follow
// that rule is pushed on a stack. Here are the various
// context-sensitive follow sets:
//
// FOLLOW(b1_in_a) = FIRST(']') = ']'
// FOLLOW(b2_in_a) = FIRST(')') = ')'
// FOLLOW(c_in_b) = FIRST('^') = '^'
// FOLLOW(b1_in_a) = FIRST(']') = ']'
// FOLLOW(b2_in_a) = FIRST(')') = ')'
// FOLLOW(c_in_b) = FIRST('^') = '^'
//
// Upon erroneous input "[]", the call chain is
// Upon erroneous input “[]”, the call chain is
//
// a -> b -> c
// a → b → c
//
// and, hence, the follow context stack is:
//
// depth follow set start of rule execution
// 0 <EOF> a (from main())
// 1 ']' b
// 2 '^' c
// Depth Follow set Start of rule execution
// 0 <EOF> a (from main())
// 1 ']' b
// 2 '^' c
//
// Notice that ')' is not included, because b would have to have
// been called from a different context in rule a for ')' to be
@ -598,11 +571,14 @@ func (d *DefaultErrorStrategy) escapeWSAndQuote(s string) string {
//
// For error recovery, we cannot consider FOLLOW(c)
// (context-sensitive or otherwise). We need the combined set of
// all context-sensitive FOLLOW sets--the set of all tokens that
// all context-sensitive FOLLOW sets - the set of all tokens that
// could follow any reference in the call chain. We need to
// reSync to one of those tokens. Note that FOLLOW(c)='^' and if
// we reSync'd to that token, we'd consume until EOF. We need to
// Sync to context-sensitive FOLLOWs for a, b, and c: {']','^'}.
// Sync to context-sensitive FOLLOWs for a, b, and c:
//
// {']','^'}
//
// In this case, for input "[]", LA(1) is ']' and in the set, so we would
// not consume anything. After printing an error, rule c would
// return normally. Rule b would not find the required '^' though.
@ -620,22 +596,19 @@ func (d *DefaultErrorStrategy) escapeWSAndQuote(s string) string {
//
// ANTLR's error recovery mechanism is based upon original ideas:
//
// "Algorithms + Data Structures = Programs" by Niklaus Wirth
// [Algorithms + Data Structures = Programs] by Niklaus Wirth and
// [A note on error recovery in recursive descent parsers].
//
// and
// Later, Josef Grosch had some good ideas in [Efficient and Comfortable Error Recovery in Recursive Descent
// Parsers]
//
// "A note on error recovery in recursive descent parsers":
// http://portal.acm.org/citation.cfm?id=947902.947905
// Like Grosch I implement context-sensitive FOLLOW sets that are combined at run-time upon error to avoid overhead
// during parsing. Later, the runtime Sync was improved for loops/sub-rules see [Sync] docs
//
// Later, Josef Grosch had some good ideas:
//
// "Efficient and Comfortable Error Recovery in Recursive Descent
// Parsers":
// ftp://www.cocolab.com/products/cocktail/doca4.ps/ell.ps.zip
//
// Like Grosch I implement context-sensitive FOLLOW sets that are combined
// at run-time upon error to avoid overhead during parsing.
func (d *DefaultErrorStrategy) getErrorRecoverySet(recognizer Parser) *IntervalSet {
// [A note on error recovery in recursive descent parsers]: http://portal.acm.org/citation.cfm?id=947902.947905
// [Algorithms + Data Structures = Programs]: https://t.ly/5QzgE
// [Efficient and Comfortable Error Recovery in Recursive Descent Parsers]: ftp://www.cocolab.com/products/cocktail/doca4.ps/ell.ps.zip
func (d *DefaultErrorStrategy) GetErrorRecoverySet(recognizer Parser) *IntervalSet {
atn := recognizer.GetInterpreter().atn
ctx := recognizer.GetParserRuleContext()
recoverSet := NewIntervalSet()
@ -660,40 +633,36 @@ func (d *DefaultErrorStrategy) consumeUntil(recognizer Parser, set *IntervalSet)
}
}
//
// This implementation of {@link ANTLRErrorStrategy} responds to syntax errors
// The BailErrorStrategy implementation of ANTLRErrorStrategy responds to syntax errors
// by immediately canceling the parse operation with a
// {@link ParseCancellationException}. The implementation ensures that the
// {@link ParserRuleContext//exception} field is set for all parse tree nodes
// [ParseCancellationException]. The implementation ensures that the
// [ParserRuleContext//exception] field is set for all parse tree nodes
// that were not completed prior to encountering the error.
//
// <p>
// This error strategy is useful in the following scenarios.</p>
// This error strategy is useful in the following scenarios.
//
// <ul>
// <li><strong>Two-stage parsing:</strong> This error strategy allows the first
// stage of two-stage parsing to immediately terminate if an error is
// encountered, and immediately fall back to the second stage. In addition to
// avoiding wasted work by attempting to recover from errors here, the empty
// implementation of {@link BailErrorStrategy//Sync} improves the performance of
// the first stage.</li>
// <li><strong>Silent validation:</strong> When syntax errors are not being
// Reported or logged, and the parse result is simply ignored if errors occur,
// the {@link BailErrorStrategy} avoids wasting work on recovering from errors
// when the result will be ignored either way.</li>
// </ul>
// - Two-stage parsing: This error strategy allows the first
// stage of two-stage parsing to immediately terminate if an error is
// encountered, and immediately fall back to the second stage. In addition to
// avoiding wasted work by attempting to recover from errors here, the empty
// implementation of [BailErrorStrategy.Sync] improves the performance of
// the first stage.
//
// <p>
// {@code myparser.setErrorHandler(NewBailErrorStrategy())}</p>
// - Silent validation: When syntax errors are not being
// Reported or logged, and the parse result is simply ignored if errors occur,
// the [BailErrorStrategy] avoids wasting work on recovering from errors
// when the result will be ignored either way.
//
// @see Parser//setErrorHandler(ANTLRErrorStrategy)
// myparser.SetErrorHandler(NewBailErrorStrategy())
//
// See also: [Parser.SetErrorHandler(ANTLRErrorStrategy)]
type BailErrorStrategy struct {
*DefaultErrorStrategy
}
var _ ErrorStrategy = &BailErrorStrategy{}
//goland:noinspection GoUnusedExportedFunction
func NewBailErrorStrategy() *BailErrorStrategy {
b := new(BailErrorStrategy)
@ -703,10 +672,10 @@ func NewBailErrorStrategy() *BailErrorStrategy {
return b
}
// Instead of recovering from exception {@code e}, re-panic it wrapped
// in a {@link ParseCancellationException} so it is not caught by the
// rule func catches. Use {@link Exception//getCause()} to get the
// original {@link RecognitionException}.
// Recover Instead of recovering from exception e, re-panic it wrapped
// in a [ParseCancellationException] so it is not caught by the
// rule func catches. Use Exception.GetCause() to get the
// original [RecognitionException].
func (b *BailErrorStrategy) Recover(recognizer Parser, e RecognitionException) {
context := recognizer.GetParserRuleContext()
for context != nil {
@ -717,10 +686,10 @@ func (b *BailErrorStrategy) Recover(recognizer Parser, e RecognitionException) {
context = nil
}
}
panic(NewParseCancellationException()) // TODO we don't emit e properly
recognizer.SetError(NewParseCancellationException()) // TODO: we don't emit e properly
}
// Make sure we don't attempt to recover inline if the parser
// RecoverInline makes sure we don't attempt to recover inline if the parser
// successfully recovers, it won't panic an exception.
func (b *BailErrorStrategy) RecoverInline(recognizer Parser) Token {
b.Recover(recognizer, NewInputMisMatchException(recognizer))
@ -728,7 +697,6 @@ func (b *BailErrorStrategy) RecoverInline(recognizer Parser) Token {
return nil
}
// Make sure we don't attempt to recover from problems in subrules.//
func (b *BailErrorStrategy) Sync(recognizer Parser) {
// pass
// Sync makes sure we don't attempt to recover from problems in sub-rules.
func (b *BailErrorStrategy) Sync(_ Parser) {
}

View File

@ -35,7 +35,7 @@ func NewBaseRecognitionException(message string, recognizer Recognizer, input In
// } else {
// stack := NewError().stack
// }
// TODO may be able to use - "runtime" func Stack(buf []byte, all bool) int
// TODO: may be able to use - "runtime" func Stack(buf []byte, all bool) int
t := new(BaseRecognitionException)
@ -43,15 +43,17 @@ func NewBaseRecognitionException(message string, recognizer Recognizer, input In
t.recognizer = recognizer
t.input = input
t.ctx = ctx
// The current {@link Token} when an error occurred. Since not all streams
// The current Token when an error occurred. Since not all streams
// support accessing symbols by index, we have to track the {@link Token}
// instance itself.
//
t.offendingToken = nil
// Get the ATN state number the parser was in at the time the error
// occurred. For {@link NoViableAltException} and
// {@link LexerNoViableAltException} exceptions, this is the
// {@link DecisionState} number. For others, it is the state whose outgoing
// edge we couldn't Match.
// occurred. For NoViableAltException and LexerNoViableAltException exceptions, this is the
// DecisionState number. For others, it is the state whose outgoing edge we couldn't Match.
//
t.offendingState = -1
if t.recognizer != nil {
t.offendingState = t.recognizer.GetState()
@ -74,15 +76,15 @@ func (b *BaseRecognitionException) GetInputStream() IntStream {
// <p>If the state number is not known, b method returns -1.</p>
// Gets the set of input symbols which could potentially follow the
// previously Matched symbol at the time b exception was panicn.
// getExpectedTokens gets the set of input symbols which could potentially follow the
// previously Matched symbol at the time this exception was raised.
//
// <p>If the set of expected tokens is not known and could not be computed,
// b method returns {@code nil}.</p>
// If the set of expected tokens is not known and could not be computed,
// this method returns nil.
//
// @return The set of token types that could potentially follow the current
// state in the ATN, or {@code nil} if the information is not available.
// /
// The func returns the set of token types that could potentially follow the current
// state in the {ATN}, or nil if the information is not available.
func (b *BaseRecognitionException) getExpectedTokens() *IntervalSet {
if b.recognizer != nil {
return b.recognizer.GetATN().getExpectedTokens(b.offendingState, b.ctx)
@ -99,10 +101,10 @@ type LexerNoViableAltException struct {
*BaseRecognitionException
startIndex int
deadEndConfigs ATNConfigSet
deadEndConfigs *ATNConfigSet
}
func NewLexerNoViableAltException(lexer Lexer, input CharStream, startIndex int, deadEndConfigs ATNConfigSet) *LexerNoViableAltException {
func NewLexerNoViableAltException(lexer Lexer, input CharStream, startIndex int, deadEndConfigs *ATNConfigSet) *LexerNoViableAltException {
l := new(LexerNoViableAltException)
@ -128,14 +130,16 @@ type NoViableAltException struct {
startToken Token
offendingToken Token
ctx ParserRuleContext
deadEndConfigs ATNConfigSet
deadEndConfigs *ATNConfigSet
}
// Indicates that the parser could not decide which of two or more paths
// NewNoViableAltException creates an exception indicating that the parser could not decide which of two or more paths
// to take based upon the remaining input. It tracks the starting token
// of the offending input and also knows where the parser was
// in the various paths when the error. Reported by ReportNoViableAlternative()
func NewNoViableAltException(recognizer Parser, input TokenStream, startToken Token, offendingToken Token, deadEndConfigs ATNConfigSet, ctx ParserRuleContext) *NoViableAltException {
// in the various paths when the error.
//
// Reported by [ReportNoViableAlternative]
func NewNoViableAltException(recognizer Parser, input TokenStream, startToken Token, offendingToken Token, deadEndConfigs *ATNConfigSet, ctx ParserRuleContext) *NoViableAltException {
if ctx == nil {
ctx = recognizer.GetParserRuleContext()
@ -157,12 +161,14 @@ func NewNoViableAltException(recognizer Parser, input TokenStream, startToken To
n.BaseRecognitionException = NewBaseRecognitionException("", recognizer, input, ctx)
// Which configurations did we try at input.Index() that couldn't Match
// input.LT(1)?//
// input.LT(1)
n.deadEndConfigs = deadEndConfigs
// The token object at the start index the input stream might
// not be buffering tokens so get a reference to it. (At the
// time the error occurred, of course the stream needs to keep a
// buffer all of the tokens but later we might not have access to those.)
// not be buffering tokens so get a reference to it.
//
// At the time the error occurred, of course the stream needs to keep a
// buffer of all the tokens, but later we might not have access to those.
n.startToken = startToken
n.offendingToken = offendingToken
@ -173,7 +179,7 @@ type InputMisMatchException struct {
*BaseRecognitionException
}
// This signifies any kind of mismatched input exceptions such as
// NewInputMisMatchException creates an exception that signifies any kind of mismatched input exceptions such as
// when the current input does not Match the expected token.
func NewInputMisMatchException(recognizer Parser) *InputMisMatchException {
@ -186,11 +192,10 @@ func NewInputMisMatchException(recognizer Parser) *InputMisMatchException {
}
// A semantic predicate failed during validation. Validation of predicates
// FailedPredicateException indicates that a semantic predicate failed during validation. Validation of predicates
// occurs when normally parsing the alternative just like Matching a token.
// Disambiguating predicate evaluation occurs when we test a predicate during
// prediction.
type FailedPredicateException struct {
*BaseRecognitionException
@ -199,6 +204,7 @@ type FailedPredicateException struct {
predicate string
}
//goland:noinspection GoUnusedExportedFunction
func NewFailedPredicateException(recognizer Parser, predicate string, message string) *FailedPredicateException {
f := new(FailedPredicateException)
@ -231,6 +237,21 @@ func (f *FailedPredicateException) formatMessage(predicate, message string) stri
type ParseCancellationException struct {
}
func (p ParseCancellationException) GetOffendingToken() Token {
//TODO implement me
panic("implement me")
}
func (p ParseCancellationException) GetMessage() string {
//TODO implement me
panic("implement me")
}
func (p ParseCancellationException) GetInputStream() IntStream {
//TODO implement me
panic("implement me")
}
func NewParseCancellationException() *ParseCancellationException {
// Error.call(this)
// Error.captureStackTrace(this, ParseCancellationException)

View File

@ -5,8 +5,7 @@
package antlr
import (
"bytes"
"io"
"bufio"
"os"
)
@ -14,34 +13,53 @@ import (
// when you construct the object.
type FileStream struct {
*InputStream
InputStream
filename string
}
//goland:noinspection GoUnusedExportedFunction
func NewFileStream(fileName string) (*FileStream, error) {
buf := bytes.NewBuffer(nil)
f, err := os.Open(fileName)
if err != nil {
return nil, err
}
defer f.Close()
_, err = io.Copy(buf, f)
defer func(f *os.File) {
errF := f.Close()
if errF != nil {
}
}(f)
reader := bufio.NewReader(f)
fInfo, err := f.Stat()
if err != nil {
return nil, err
}
fs := new(FileStream)
fs := &FileStream{
InputStream: InputStream{
index: 0,
name: fileName,
},
filename: fileName,
}
fs.filename = fileName
s := string(buf.Bytes())
fs.InputStream = NewInputStream(s)
// Pre-build the buffer and read runes efficiently
//
fs.data = make([]rune, 0, fInfo.Size())
for {
r, _, err := reader.ReadRune()
if err != nil {
break
}
fs.data = append(fs.data, r)
}
fs.size = len(fs.data) // Size in runes
// All done.
//
return fs, nil
}
func (f *FileStream) GetSourceName() string {

157
vendor/github.com/antlr4-go/antlr/v4/input_stream.go generated vendored Normal file
View File

@ -0,0 +1,157 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"bufio"
"io"
)
type InputStream struct {
name string
index int
data []rune
size int
}
// NewIoStream creates a new input stream from the given io.Reader reader.
// Note that the reader is read completely into memory and so it must actually
// have a stopping point - you cannot pass in a reader on an open-ended source such
// as a socket for instance.
func NewIoStream(reader io.Reader) *InputStream {
rReader := bufio.NewReader(reader)
is := &InputStream{
name: "<empty>",
index: 0,
}
// Pre-build the buffer and read runes reasonably efficiently given that
// we don't exactly know how big the input is.
//
is.data = make([]rune, 0, 512)
for {
r, _, err := rReader.ReadRune()
if err != nil {
break
}
is.data = append(is.data, r)
}
is.size = len(is.data) // number of runes
return is
}
// NewInputStream creates a new input stream from the given string
func NewInputStream(data string) *InputStream {
is := &InputStream{
name: "<empty>",
index: 0,
data: []rune(data), // This is actually the most efficient way
}
is.size = len(is.data) // number of runes, but we could also use len(data), which is efficient too
return is
}
func (is *InputStream) reset() {
is.index = 0
}
// Consume moves the input pointer to the next character in the input stream
func (is *InputStream) Consume() {
if is.index >= is.size {
// assert is.LA(1) == TokenEOF
panic("cannot consume EOF")
}
is.index++
}
// LA returns the character at the given offset from the start of the input stream
func (is *InputStream) LA(offset int) int {
if offset == 0 {
return 0 // nil
}
if offset < 0 {
offset++ // e.g., translate LA(-1) to use offset=0
}
pos := is.index + offset - 1
if pos < 0 || pos >= is.size { // invalid
return TokenEOF
}
return int(is.data[pos])
}
// LT returns the character at the given offset from the start of the input stream
func (is *InputStream) LT(offset int) int {
return is.LA(offset)
}
// Index returns the current offset in to the input stream
func (is *InputStream) Index() int {
return is.index
}
// Size returns the total number of characters in the input stream
func (is *InputStream) Size() int {
return is.size
}
// Mark does nothing here as we have entire buffer
func (is *InputStream) Mark() int {
return -1
}
// Release does nothing here as we have entire buffer
func (is *InputStream) Release(_ int) {
}
// Seek the input point to the provided index offset
func (is *InputStream) Seek(index int) {
if index <= is.index {
is.index = index // just jump don't update stream state (line,...)
return
}
// seek forward
is.index = intMin(index, is.size)
}
// GetText returns the text from the input stream from the start to the stop index
func (is *InputStream) GetText(start int, stop int) string {
if stop >= is.size {
stop = is.size - 1
}
if start >= is.size {
return ""
}
return string(is.data[start : stop+1])
}
// GetTextFromTokens returns the text from the input stream from the first character of the start token to the last
// character of the stop token
func (is *InputStream) GetTextFromTokens(start, stop Token) string {
if start != nil && stop != nil {
return is.GetTextFromInterval(NewInterval(start.GetTokenIndex(), stop.GetTokenIndex()))
}
return ""
}
func (is *InputStream) GetTextFromInterval(i Interval) string {
return is.GetText(i.Start, i.Stop)
}
func (*InputStream) GetSourceName() string {
return ""
}
// String returns the entire input stream as a string
func (is *InputStream) String() string {
return string(is.data)
}

View File

@ -14,20 +14,21 @@ type Interval struct {
Stop int
}
/* stop is not included! */
func NewInterval(start, stop int) *Interval {
i := new(Interval)
i.Start = start
i.Stop = stop
return i
// NewInterval creates a new interval with the given start and stop values.
func NewInterval(start, stop int) Interval {
return Interval{
Start: start,
Stop: stop,
}
}
func (i *Interval) Contains(item int) bool {
// Contains returns true if the given item is contained within the interval.
func (i Interval) Contains(item int) bool {
return item >= i.Start && item < i.Stop
}
func (i *Interval) String() string {
// String generates a string representation of the interval.
func (i Interval) String() string {
if i.Start == i.Stop-1 {
return strconv.Itoa(i.Start)
}
@ -35,15 +36,18 @@ func (i *Interval) String() string {
return strconv.Itoa(i.Start) + ".." + strconv.Itoa(i.Stop-1)
}
func (i *Interval) length() int {
// Length returns the length of the interval.
func (i Interval) Length() int {
return i.Stop - i.Start
}
// IntervalSet represents a collection of [Intervals], which may be read-only.
type IntervalSet struct {
intervals []*Interval
intervals []Interval
readOnly bool
}
// NewIntervalSet creates a new empty, writable, interval set.
func NewIntervalSet() *IntervalSet {
i := new(IntervalSet)
@ -54,6 +58,20 @@ func NewIntervalSet() *IntervalSet {
return i
}
func (i *IntervalSet) Equals(other *IntervalSet) bool {
if len(i.intervals) != len(other.intervals) {
return false
}
for k, v := range i.intervals {
if v.Start != other.intervals[k].Start || v.Stop != other.intervals[k].Stop {
return false
}
}
return true
}
func (i *IntervalSet) first() int {
if len(i.intervals) == 0 {
return TokenInvalidType
@ -70,16 +88,16 @@ func (i *IntervalSet) addRange(l, h int) {
i.addInterval(NewInterval(l, h+1))
}
func (i *IntervalSet) addInterval(v *Interval) {
func (i *IntervalSet) addInterval(v Interval) {
if i.intervals == nil {
i.intervals = make([]*Interval, 0)
i.intervals = make([]Interval, 0)
i.intervals = append(i.intervals, v)
} else {
// find insert pos
for k, interval := range i.intervals {
// distinct range -> insert
if v.Stop < interval.Start {
i.intervals = append(i.intervals[0:k], append([]*Interval{v}, i.intervals[k:]...)...)
i.intervals = append(i.intervals[0:k], append([]Interval{v}, i.intervals[k:]...)...)
return
} else if v.Stop == interval.Start {
i.intervals[k].Start = v.Start
@ -139,16 +157,16 @@ func (i *IntervalSet) contains(item int) bool {
}
func (i *IntervalSet) length() int {
len := 0
iLen := 0
for _, v := range i.intervals {
len += v.length()
iLen += v.Length()
}
return len
return iLen
}
func (i *IntervalSet) removeRange(v *Interval) {
func (i *IntervalSet) removeRange(v Interval) {
if v.Start == v.Stop-1 {
i.removeOne(v.Start)
} else if i.intervals != nil {
@ -162,7 +180,7 @@ func (i *IntervalSet) removeRange(v *Interval) {
i.intervals[k] = NewInterval(ni.Start, v.Start)
x := NewInterval(v.Stop, ni.Stop)
// i.intervals.splice(k, 0, x)
i.intervals = append(i.intervals[0:k], append([]*Interval{x}, i.intervals[k:]...)...)
i.intervals = append(i.intervals[0:k], append([]Interval{x}, i.intervals[k:]...)...)
return
} else if v.Start <= ni.Start && v.Stop >= ni.Stop {
// i.intervals.splice(k, 1)
@ -199,7 +217,7 @@ func (i *IntervalSet) removeOne(v int) {
x := NewInterval(ki.Start, v)
ki.Start = v + 1
// i.intervals.splice(k, 0, x)
i.intervals = append(i.intervals[0:k], append([]*Interval{x}, i.intervals[k:]...)...)
i.intervals = append(i.intervals[0:k], append([]Interval{x}, i.intervals[k:]...)...)
return
}
}
@ -223,7 +241,7 @@ func (i *IntervalSet) StringVerbose(literalNames []string, symbolicNames []strin
return i.toIndexString()
}
func (i *IntervalSet) GetIntervals() []*Interval {
func (i *IntervalSet) GetIntervals() []Interval {
return i.intervals
}

685
vendor/github.com/antlr4-go/antlr/v4/jcollect.go generated vendored Normal file
View File

@ -0,0 +1,685 @@
package antlr
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
import (
"container/list"
"runtime/debug"
"sort"
"sync"
)
// Collectable is an interface that a struct should implement if it is to be
// usable as a key in these collections.
type Collectable[T any] interface {
Hash() int
Equals(other Collectable[T]) bool
}
type Comparator[T any] interface {
Hash1(o T) int
Equals2(T, T) bool
}
type CollectionSource int
type CollectionDescriptor struct {
SybolicName string
Description string
}
const (
UnknownCollection CollectionSource = iota
ATNConfigLookupCollection
ATNStateCollection
DFAStateCollection
ATNConfigCollection
PredictionContextCollection
SemanticContextCollection
ClosureBusyCollection
PredictionVisitedCollection
MergeCacheCollection
PredictionContextCacheCollection
AltSetCollection
ReachSetCollection
)
var CollectionDescriptors = map[CollectionSource]CollectionDescriptor{
UnknownCollection: {
SybolicName: "UnknownCollection",
Description: "Unknown collection type. Only used if the target author thought it was an unimportant collection.",
},
ATNConfigCollection: {
SybolicName: "ATNConfigCollection",
Description: "ATNConfig collection. Used to store the ATNConfigs for a particular state in the ATN." +
"For instance, it is used to store the results of the closure() operation in the ATN.",
},
ATNConfigLookupCollection: {
SybolicName: "ATNConfigLookupCollection",
Description: "ATNConfigLookup collection. Used to store the ATNConfigs for a particular state in the ATN." +
"This is used to prevent duplicating equivalent states in an ATNConfigurationSet.",
},
ATNStateCollection: {
SybolicName: "ATNStateCollection",
Description: "ATNState collection. This is used to store the states of the ATN.",
},
DFAStateCollection: {
SybolicName: "DFAStateCollection",
Description: "DFAState collection. This is used to store the states of the DFA.",
},
PredictionContextCollection: {
SybolicName: "PredictionContextCollection",
Description: "PredictionContext collection. This is used to store the prediction contexts of the ATN and cache computes.",
},
SemanticContextCollection: {
SybolicName: "SemanticContextCollection",
Description: "SemanticContext collection. This is used to store the semantic contexts of the ATN.",
},
ClosureBusyCollection: {
SybolicName: "ClosureBusyCollection",
Description: "ClosureBusy collection. This is used to check and prevent infinite recursion right recursive rules." +
"It stores ATNConfigs that are currently being processed in the closure() operation.",
},
PredictionVisitedCollection: {
SybolicName: "PredictionVisitedCollection",
Description: "A map that records whether we have visited a particular context when searching through cached entries.",
},
MergeCacheCollection: {
SybolicName: "MergeCacheCollection",
Description: "A map that records whether we have already merged two particular contexts and can save effort by not repeating it.",
},
PredictionContextCacheCollection: {
SybolicName: "PredictionContextCacheCollection",
Description: "A map that records whether we have already created a particular context and can save effort by not computing it again.",
},
AltSetCollection: {
SybolicName: "AltSetCollection",
Description: "Used to eliminate duplicate alternatives in an ATN config set.",
},
ReachSetCollection: {
SybolicName: "ReachSetCollection",
Description: "Used as merge cache to prevent us needing to compute the merge of two states if we have already done it.",
},
}
// JStore implements a container that allows the use of a struct to calculate the key
// for a collection of values akin to map. This is not meant to be a full-blown HashMap but just
// serve the needs of the ANTLR Go runtime.
//
// For ease of porting the logic of the runtime from the master target (Java), this collection
// operates in a similar way to Java, in that it can use any struct that supplies a Hash() and Equals()
// function as the key. The values are stored in a standard go map which internally is a form of hashmap
// itself, the key for the go map is the hash supplied by the key object. The collection is able to deal with
// hash conflicts by using a simple slice of values associated with the hash code indexed bucket. That isn't
// particularly efficient, but it is simple, and it works. As this is specifically for the ANTLR runtime, and
// we understand the requirements, then this is fine - this is not a general purpose collection.
type JStore[T any, C Comparator[T]] struct {
store map[int][]T
len int
comparator Comparator[T]
stats *JStatRec
}
func NewJStore[T any, C Comparator[T]](comparator Comparator[T], cType CollectionSource, desc string) *JStore[T, C] {
if comparator == nil {
panic("comparator cannot be nil")
}
s := &JStore[T, C]{
store: make(map[int][]T, 1),
comparator: comparator,
}
if collectStats {
s.stats = &JStatRec{
Source: cType,
Description: desc,
}
// Track where we created it from if we are being asked to do so
if runtimeConfig.statsTraceStacks {
s.stats.CreateStack = debug.Stack()
}
Statistics.AddJStatRec(s.stats)
}
return s
}
// Put will store given value in the collection. Note that the key for storage is generated from
// the value itself - this is specifically because that is what ANTLR needs - this would not be useful
// as any kind of general collection.
//
// If the key has a hash conflict, then the value will be added to the slice of values associated with the
// hash, unless the value is already in the slice, in which case the existing value is returned. Value equivalence is
// tested by calling the equals() method on the key.
//
// # If the given value is already present in the store, then the existing value is returned as v and exists is set to true
//
// If the given value is not present in the store, then the value is added to the store and returned as v and exists is set to false.
func (s *JStore[T, C]) Put(value T) (v T, exists bool) {
if collectStats {
s.stats.Puts++
}
kh := s.comparator.Hash1(value)
var hClash bool
for _, v1 := range s.store[kh] {
hClash = true
if s.comparator.Equals2(value, v1) {
if collectStats {
s.stats.PutHits++
s.stats.PutHashConflicts++
}
return v1, true
}
if collectStats {
s.stats.PutMisses++
}
}
if collectStats && hClash {
s.stats.PutHashConflicts++
}
s.store[kh] = append(s.store[kh], value)
if collectStats {
if len(s.store[kh]) > s.stats.MaxSlotSize {
s.stats.MaxSlotSize = len(s.store[kh])
}
}
s.len++
if collectStats {
s.stats.CurSize = s.len
if s.len > s.stats.MaxSize {
s.stats.MaxSize = s.len
}
}
return value, false
}
// Get will return the value associated with the key - the type of the key is the same type as the value
// which would not generally be useful, but this is a specific thing for ANTLR where the key is
// generated using the object we are going to store.
func (s *JStore[T, C]) Get(key T) (T, bool) {
if collectStats {
s.stats.Gets++
}
kh := s.comparator.Hash1(key)
var hClash bool
for _, v := range s.store[kh] {
hClash = true
if s.comparator.Equals2(key, v) {
if collectStats {
s.stats.GetHits++
s.stats.GetHashConflicts++
}
return v, true
}
if collectStats {
s.stats.GetMisses++
}
}
if collectStats {
if hClash {
s.stats.GetHashConflicts++
}
s.stats.GetNoEnt++
}
return key, false
}
// Contains returns true if the given key is present in the store
func (s *JStore[T, C]) Contains(key T) bool {
_, present := s.Get(key)
return present
}
func (s *JStore[T, C]) SortedSlice(less func(i, j T) bool) []T {
vs := make([]T, 0, len(s.store))
for _, v := range s.store {
vs = append(vs, v...)
}
sort.Slice(vs, func(i, j int) bool {
return less(vs[i], vs[j])
})
return vs
}
func (s *JStore[T, C]) Each(f func(T) bool) {
for _, e := range s.store {
for _, v := range e {
f(v)
}
}
}
func (s *JStore[T, C]) Len() int {
return s.len
}
func (s *JStore[T, C]) Values() []T {
vs := make([]T, 0, len(s.store))
for _, e := range s.store {
vs = append(vs, e...)
}
return vs
}
type entry[K, V any] struct {
key K
val V
}
type JMap[K, V any, C Comparator[K]] struct {
store map[int][]*entry[K, V]
len int
comparator Comparator[K]
stats *JStatRec
}
func NewJMap[K, V any, C Comparator[K]](comparator Comparator[K], cType CollectionSource, desc string) *JMap[K, V, C] {
m := &JMap[K, V, C]{
store: make(map[int][]*entry[K, V], 1),
comparator: comparator,
}
if collectStats {
m.stats = &JStatRec{
Source: cType,
Description: desc,
}
// Track where we created it from if we are being asked to do so
if runtimeConfig.statsTraceStacks {
m.stats.CreateStack = debug.Stack()
}
Statistics.AddJStatRec(m.stats)
}
return m
}
func (m *JMap[K, V, C]) Put(key K, val V) (V, bool) {
if collectStats {
m.stats.Puts++
}
kh := m.comparator.Hash1(key)
var hClash bool
for _, e := range m.store[kh] {
hClash = true
if m.comparator.Equals2(e.key, key) {
if collectStats {
m.stats.PutHits++
m.stats.PutHashConflicts++
}
return e.val, true
}
if collectStats {
m.stats.PutMisses++
}
}
if collectStats {
if hClash {
m.stats.PutHashConflicts++
}
}
m.store[kh] = append(m.store[kh], &entry[K, V]{key, val})
if collectStats {
if len(m.store[kh]) > m.stats.MaxSlotSize {
m.stats.MaxSlotSize = len(m.store[kh])
}
}
m.len++
if collectStats {
m.stats.CurSize = m.len
if m.len > m.stats.MaxSize {
m.stats.MaxSize = m.len
}
}
return val, false
}
func (m *JMap[K, V, C]) Values() []V {
vs := make([]V, 0, len(m.store))
for _, e := range m.store {
for _, v := range e {
vs = append(vs, v.val)
}
}
return vs
}
func (m *JMap[K, V, C]) Get(key K) (V, bool) {
if collectStats {
m.stats.Gets++
}
var none V
kh := m.comparator.Hash1(key)
var hClash bool
for _, e := range m.store[kh] {
hClash = true
if m.comparator.Equals2(e.key, key) {
if collectStats {
m.stats.GetHits++
m.stats.GetHashConflicts++
}
return e.val, true
}
if collectStats {
m.stats.GetMisses++
}
}
if collectStats {
if hClash {
m.stats.GetHashConflicts++
}
m.stats.GetNoEnt++
}
return none, false
}
func (m *JMap[K, V, C]) Len() int {
return m.len
}
func (m *JMap[K, V, C]) Delete(key K) {
kh := m.comparator.Hash1(key)
for i, e := range m.store[kh] {
if m.comparator.Equals2(e.key, key) {
m.store[kh] = append(m.store[kh][:i], m.store[kh][i+1:]...)
m.len--
return
}
}
}
func (m *JMap[K, V, C]) Clear() {
m.store = make(map[int][]*entry[K, V])
}
type JPCMap struct {
store *JMap[*PredictionContext, *JMap[*PredictionContext, *PredictionContext, *ObjEqComparator[*PredictionContext]], *ObjEqComparator[*PredictionContext]]
size int
stats *JStatRec
}
func NewJPCMap(cType CollectionSource, desc string) *JPCMap {
m := &JPCMap{
store: NewJMap[*PredictionContext, *JMap[*PredictionContext, *PredictionContext, *ObjEqComparator[*PredictionContext]], *ObjEqComparator[*PredictionContext]](pContextEqInst, cType, desc),
}
if collectStats {
m.stats = &JStatRec{
Source: cType,
Description: desc,
}
// Track where we created it from if we are being asked to do so
if runtimeConfig.statsTraceStacks {
m.stats.CreateStack = debug.Stack()
}
Statistics.AddJStatRec(m.stats)
}
return m
}
func (pcm *JPCMap) Get(k1, k2 *PredictionContext) (*PredictionContext, bool) {
if collectStats {
pcm.stats.Gets++
}
// Do we have a map stored by k1?
//
m2, present := pcm.store.Get(k1)
if present {
if collectStats {
pcm.stats.GetHits++
}
// We found a map of values corresponding to k1, so now we need to look up k2 in that map
//
return m2.Get(k2)
}
if collectStats {
pcm.stats.GetMisses++
}
return nil, false
}
func (pcm *JPCMap) Put(k1, k2, v *PredictionContext) {
if collectStats {
pcm.stats.Puts++
}
// First does a map already exist for k1?
//
if m2, present := pcm.store.Get(k1); present {
if collectStats {
pcm.stats.PutHits++
}
_, present = m2.Put(k2, v)
if !present {
pcm.size++
if collectStats {
pcm.stats.CurSize = pcm.size
if pcm.size > pcm.stats.MaxSize {
pcm.stats.MaxSize = pcm.size
}
}
}
} else {
// No map found for k1, so we create it, add in our value, then store is
//
if collectStats {
pcm.stats.PutMisses++
m2 = NewJMap[*PredictionContext, *PredictionContext, *ObjEqComparator[*PredictionContext]](pContextEqInst, pcm.stats.Source, pcm.stats.Description+" map entry")
} else {
m2 = NewJMap[*PredictionContext, *PredictionContext, *ObjEqComparator[*PredictionContext]](pContextEqInst, PredictionContextCacheCollection, "map entry")
}
m2.Put(k2, v)
pcm.store.Put(k1, m2)
pcm.size++
}
}
type JPCMap2 struct {
store map[int][]JPCEntry
size int
stats *JStatRec
}
type JPCEntry struct {
k1, k2, v *PredictionContext
}
func NewJPCMap2(cType CollectionSource, desc string) *JPCMap2 {
m := &JPCMap2{
store: make(map[int][]JPCEntry, 1000),
}
if collectStats {
m.stats = &JStatRec{
Source: cType,
Description: desc,
}
// Track where we created it from if we are being asked to do so
if runtimeConfig.statsTraceStacks {
m.stats.CreateStack = debug.Stack()
}
Statistics.AddJStatRec(m.stats)
}
return m
}
func dHash(k1, k2 *PredictionContext) int {
return k1.cachedHash*31 + k2.cachedHash
}
func (pcm *JPCMap2) Get(k1, k2 *PredictionContext) (*PredictionContext, bool) {
if collectStats {
pcm.stats.Gets++
}
h := dHash(k1, k2)
var hClash bool
for _, e := range pcm.store[h] {
hClash = true
if e.k1.Equals(k1) && e.k2.Equals(k2) {
if collectStats {
pcm.stats.GetHits++
pcm.stats.GetHashConflicts++
}
return e.v, true
}
if collectStats {
pcm.stats.GetMisses++
}
}
if collectStats {
if hClash {
pcm.stats.GetHashConflicts++
}
pcm.stats.GetNoEnt++
}
return nil, false
}
func (pcm *JPCMap2) Put(k1, k2, v *PredictionContext) (*PredictionContext, bool) {
if collectStats {
pcm.stats.Puts++
}
h := dHash(k1, k2)
var hClash bool
for _, e := range pcm.store[h] {
hClash = true
if e.k1.Equals(k1) && e.k2.Equals(k2) {
if collectStats {
pcm.stats.PutHits++
pcm.stats.PutHashConflicts++
}
return e.v, true
}
if collectStats {
pcm.stats.PutMisses++
}
}
if collectStats {
if hClash {
pcm.stats.PutHashConflicts++
}
}
pcm.store[h] = append(pcm.store[h], JPCEntry{k1, k2, v})
pcm.size++
if collectStats {
pcm.stats.CurSize = pcm.size
if pcm.size > pcm.stats.MaxSize {
pcm.stats.MaxSize = pcm.size
}
}
return nil, false
}
type VisitEntry struct {
k *PredictionContext
v *PredictionContext
}
type VisitRecord struct {
store map[*PredictionContext]*PredictionContext
len int
stats *JStatRec
}
type VisitList struct {
cache *list.List
lock sync.RWMutex
}
var visitListPool = VisitList{
cache: list.New(),
lock: sync.RWMutex{},
}
// NewVisitRecord returns a new VisitRecord instance from the pool if available.
// Note that this "map" uses a pointer as a key because we are emulating the behavior of
// IdentityHashMap in Java, which uses the `==` operator to compare whether the keys are equal,
// which means is the key the same reference to an object rather than is it .equals() to another
// object.
func NewVisitRecord() *VisitRecord {
visitListPool.lock.Lock()
el := visitListPool.cache.Front()
defer visitListPool.lock.Unlock()
var vr *VisitRecord
if el == nil {
vr = &VisitRecord{
store: make(map[*PredictionContext]*PredictionContext),
}
if collectStats {
vr.stats = &JStatRec{
Source: PredictionContextCacheCollection,
Description: "VisitRecord",
}
// Track where we created it from if we are being asked to do so
if runtimeConfig.statsTraceStacks {
vr.stats.CreateStack = debug.Stack()
}
}
} else {
vr = el.Value.(*VisitRecord)
visitListPool.cache.Remove(el)
vr.store = make(map[*PredictionContext]*PredictionContext)
}
if collectStats {
Statistics.AddJStatRec(vr.stats)
}
return vr
}
func (vr *VisitRecord) Release() {
vr.len = 0
vr.store = nil
if collectStats {
vr.stats.MaxSize = 0
vr.stats.CurSize = 0
vr.stats.Gets = 0
vr.stats.GetHits = 0
vr.stats.GetMisses = 0
vr.stats.GetHashConflicts = 0
vr.stats.GetNoEnt = 0
vr.stats.Puts = 0
vr.stats.PutHits = 0
vr.stats.PutMisses = 0
vr.stats.PutHashConflicts = 0
vr.stats.MaxSlotSize = 0
}
visitListPool.lock.Lock()
visitListPool.cache.PushBack(vr)
visitListPool.lock.Unlock()
}
func (vr *VisitRecord) Get(k *PredictionContext) (*PredictionContext, bool) {
if collectStats {
vr.stats.Gets++
}
v := vr.store[k]
if v != nil {
if collectStats {
vr.stats.GetHits++
}
return v, true
}
if collectStats {
vr.stats.GetNoEnt++
}
return nil, false
}
func (vr *VisitRecord) Put(k, v *PredictionContext) (*PredictionContext, bool) {
if collectStats {
vr.stats.Puts++
}
vr.store[k] = v
vr.len++
if collectStats {
vr.stats.CurSize = vr.len
if vr.len > vr.stats.MaxSize {
vr.stats.MaxSize = vr.len
}
}
return v, false
}

View File

@ -69,7 +69,7 @@ func NewBaseLexer(input CharStream) *BaseLexer {
// create a single token. NextToken will return l object after
// Matching lexer rule(s). If you subclass to allow multiple token
// emissions, then set l to the last token to be Matched or
// something nonnil so that the auto token emit mechanism will not
// something non nil so that the auto token emit mechanism will not
// emit another token.
lexer.token = nil
@ -111,6 +111,7 @@ const (
LexerSkip = -3
)
//goland:noinspection GoUnusedConst
const (
LexerDefaultTokenChannel = TokenDefaultChannel
LexerHidden = TokenHiddenChannel
@ -118,7 +119,7 @@ const (
LexerMaxCharValue = 0x10FFFF
)
func (b *BaseLexer) reset() {
func (b *BaseLexer) Reset() {
// wack Lexer state variables
if b.input != nil {
b.input.Seek(0) // rewind the input
@ -176,7 +177,7 @@ func (b *BaseLexer) safeMatch() (ret int) {
return b.Interpreter.Match(b.input, b.mode)
}
// Return a token from l source i.e., Match a token on the char stream.
// NextToken returns a token from the lexer input source i.e., Match a token on the source char stream.
func (b *BaseLexer) NextToken() Token {
if b.input == nil {
panic("NextToken requires a non-nil input stream.")
@ -205,9 +206,8 @@ func (b *BaseLexer) NextToken() Token {
continueOuter := false
for {
b.thetype = TokenInvalidType
ttype := LexerSkip
ttype = b.safeMatch()
ttype := b.safeMatch()
if b.input.LA(1) == TokenEOF {
b.hitEOF = true
@ -234,12 +234,11 @@ func (b *BaseLexer) NextToken() Token {
}
}
// Instruct the lexer to Skip creating a token for current lexer rule
// and look for another token. NextToken() knows to keep looking when
// a lexer rule finishes with token set to SKIPTOKEN. Recall that
// Skip instructs the lexer to Skip creating a token for current lexer rule
// and look for another token. [NextToken] knows to keep looking when
// a lexer rule finishes with token set to [SKIPTOKEN]. Recall that
// if token==nil at end of any token rule, it creates one for you
// and emits it.
// /
func (b *BaseLexer) Skip() {
b.thetype = LexerSkip
}
@ -248,23 +247,29 @@ func (b *BaseLexer) More() {
b.thetype = LexerMore
}
// SetMode changes the lexer to a new mode. The lexer will use this mode from hereon in and the rules for that mode
// will be in force.
func (b *BaseLexer) SetMode(m int) {
b.mode = m
}
// PushMode saves the current lexer mode so that it can be restored later. See [PopMode], then sets the
// current lexer mode to the supplied mode m.
func (b *BaseLexer) PushMode(m int) {
if LexerATNSimulatorDebug {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("pushMode " + strconv.Itoa(m))
}
b.modeStack.Push(b.mode)
b.mode = m
}
// PopMode restores the lexer mode saved by a call to [PushMode]. It is a panic error if there is no saved mode to
// return to.
func (b *BaseLexer) PopMode() int {
if len(b.modeStack) == 0 {
panic("Empty Stack")
}
if LexerATNSimulatorDebug {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("popMode back to " + fmt.Sprint(b.modeStack[0:len(b.modeStack)-1]))
}
i, _ := b.modeStack.Pop()
@ -280,7 +285,7 @@ func (b *BaseLexer) inputStream() CharStream {
func (b *BaseLexer) SetInputStream(input CharStream) {
b.input = nil
b.tokenFactorySourcePair = &TokenSourceCharStreamPair{b, b.input}
b.reset()
b.Reset()
b.input = input
b.tokenFactorySourcePair = &TokenSourceCharStreamPair{b, b.input}
}
@ -289,20 +294,19 @@ func (b *BaseLexer) GetTokenSourceCharStreamPair() *TokenSourceCharStreamPair {
return b.tokenFactorySourcePair
}
// By default does not support multiple emits per NextToken invocation
// for efficiency reasons. Subclass and override l method, NextToken,
// and GetToken (to push tokens into a list and pull from that list
// rather than a single variable as l implementation does).
// /
// EmitToken by default does not support multiple emits per [NextToken] invocation
// for efficiency reasons. Subclass and override this func, [NextToken],
// and [GetToken] (to push tokens into a list and pull from that list
// rather than a single variable as this implementation does).
func (b *BaseLexer) EmitToken(token Token) {
b.token = token
}
// The standard method called to automatically emit a token at the
// Emit is the standard method called to automatically emit a token at the
// outermost lexical rule. The token object should point into the
// char buffer start..stop. If there is a text override in 'text',
// use that to set the token's text. Override l method to emit
// custom Token objects or provide a Newfactory.
// use that to set the token's text. Override this method to emit
// custom [Token] objects or provide a new factory.
// /
func (b *BaseLexer) Emit() Token {
t := b.factory.Create(b.tokenFactorySourcePair, b.thetype, b.text, b.channel, b.TokenStartCharIndex, b.GetCharIndex()-1, b.TokenStartLine, b.TokenStartColumn)
@ -310,6 +314,7 @@ func (b *BaseLexer) Emit() Token {
return t
}
// EmitEOF emits an EOF token. By default, this is the last token emitted
func (b *BaseLexer) EmitEOF() Token {
cpos := b.GetCharPositionInLine()
lpos := b.GetLine()
@ -318,6 +323,7 @@ func (b *BaseLexer) EmitEOF() Token {
return eof
}
// GetCharPositionInLine returns the current position in the current line as far as the lexer is concerned.
func (b *BaseLexer) GetCharPositionInLine() int {
return b.Interpreter.GetCharPositionInLine()
}
@ -334,13 +340,12 @@ func (b *BaseLexer) SetType(t int) {
b.thetype = t
}
// What is the index of the current character of lookahead?///
// GetCharIndex returns the index of the current character of lookahead
func (b *BaseLexer) GetCharIndex() int {
return b.input.Index()
}
// Return the text Matched so far for the current token or any text override.
// Set the complete text of l token it wipes any previous changes to the text.
// GetText returns the text Matched so far for the current token or any text override.
func (b *BaseLexer) GetText() string {
if b.text != "" {
return b.text
@ -349,17 +354,20 @@ func (b *BaseLexer) GetText() string {
return b.Interpreter.GetText(b.input)
}
// SetText sets the complete text of this token; it wipes any previous changes to the text.
func (b *BaseLexer) SetText(text string) {
b.text = text
}
// GetATN returns the ATN used by the lexer.
func (b *BaseLexer) GetATN() *ATN {
return b.Interpreter.ATN()
}
// Return a list of all Token objects in input char stream.
// Forces load of all tokens. Does not include EOF token.
// /
// GetAllTokens returns a list of all [Token] objects in input char stream.
// Forces a load of all tokens that can be made from the input char stream.
//
// Does not include EOF token.
func (b *BaseLexer) GetAllTokens() []Token {
vl := b.Virt
tokens := make([]Token, 0)
@ -398,11 +406,13 @@ func (b *BaseLexer) getCharErrorDisplay(c rune) string {
return "'" + b.getErrorDisplayForChar(c) + "'"
}
// Lexers can normally Match any char in it's vocabulary after Matching
// a token, so do the easy thing and just kill a character and hope
// Recover can normally Match any char in its vocabulary after Matching
// a token, so here we do the easy thing and just kill a character and hope
// it all works out. You can instead use the rule invocation stack
// to do sophisticated error recovery if you are in a fragment rule.
// /
//
// In general, lexers should not need to recover and should have rules that cover any eventuality, such as
// a character that makes no sense to the recognizer.
func (b *BaseLexer) Recover(re RecognitionException) {
if b.input.LA(1) != TokenEOF {
if _, ok := re.(*LexerNoViableAltException); ok {

View File

@ -7,14 +7,29 @@ package antlr
import "strconv"
const (
LexerActionTypeChannel = 0 //The type of a {@link LexerChannelAction} action.
LexerActionTypeCustom = 1 //The type of a {@link LexerCustomAction} action.
LexerActionTypeMode = 2 //The type of a {@link LexerModeAction} action.
LexerActionTypeMore = 3 //The type of a {@link LexerMoreAction} action.
LexerActionTypePopMode = 4 //The type of a {@link LexerPopModeAction} action.
LexerActionTypePushMode = 5 //The type of a {@link LexerPushModeAction} action.
LexerActionTypeSkip = 6 //The type of a {@link LexerSkipAction} action.
LexerActionTypeType = 7 //The type of a {@link LexerTypeAction} action.
// LexerActionTypeChannel represents a [LexerChannelAction] action.
LexerActionTypeChannel = 0
// LexerActionTypeCustom represents a [LexerCustomAction] action.
LexerActionTypeCustom = 1
// LexerActionTypeMode represents a [LexerModeAction] action.
LexerActionTypeMode = 2
// LexerActionTypeMore represents a [LexerMoreAction] action.
LexerActionTypeMore = 3
// LexerActionTypePopMode represents a [LexerPopModeAction] action.
LexerActionTypePopMode = 4
// LexerActionTypePushMode represents a [LexerPushModeAction] action.
LexerActionTypePushMode = 5
// LexerActionTypeSkip represents a [LexerSkipAction] action.
LexerActionTypeSkip = 6
// LexerActionTypeType represents a [LexerTypeAction] action.
LexerActionTypeType = 7
)
type LexerAction interface {
@ -39,7 +54,7 @@ func NewBaseLexerAction(action int) *BaseLexerAction {
return la
}
func (b *BaseLexerAction) execute(lexer Lexer) {
func (b *BaseLexerAction) execute(_ Lexer) {
panic("Not implemented")
}
@ -52,17 +67,19 @@ func (b *BaseLexerAction) getIsPositionDependent() bool {
}
func (b *BaseLexerAction) Hash() int {
return b.actionType
h := murmurInit(0)
h = murmurUpdate(h, b.actionType)
return murmurFinish(h, 1)
}
func (b *BaseLexerAction) Equals(other LexerAction) bool {
return b == other
return b.actionType == other.getActionType()
}
// Implements the {@code Skip} lexer action by calling {@link Lexer//Skip}.
// LexerSkipAction implements the [BaseLexerAction.Skip] lexer action by calling [Lexer.Skip].
//
// <p>The {@code Skip} command does not have any parameters, so l action is
// implemented as a singleton instance exposed by {@link //INSTANCE}.</p>
// The Skip command does not have any parameters, so this action is
// implemented as a singleton instance exposed by the [LexerSkipActionINSTANCE].
type LexerSkipAction struct {
*BaseLexerAction
}
@ -73,17 +90,22 @@ func NewLexerSkipAction() *LexerSkipAction {
return la
}
// Provides a singleton instance of l parameterless lexer action.
// LexerSkipActionINSTANCE provides a singleton instance of this parameterless lexer action.
var LexerSkipActionINSTANCE = NewLexerSkipAction()
func (l *LexerSkipAction) execute(lexer Lexer) {
lexer.Skip()
}
// String returns a string representation of the current [LexerSkipAction].
func (l *LexerSkipAction) String() string {
return "skip"
}
func (b *LexerSkipAction) Equals(other LexerAction) bool {
return other.getActionType() == LexerActionTypeSkip
}
// Implements the {@code type} lexer action by calling {@link Lexer//setType}
//
// with the assigned type.
@ -125,11 +147,10 @@ func (l *LexerTypeAction) String() string {
return "actionType(" + strconv.Itoa(l.thetype) + ")"
}
// Implements the {@code pushMode} lexer action by calling
// {@link Lexer//pushMode} with the assigned mode.
// LexerPushModeAction implements the pushMode lexer action by calling
// [Lexer.pushMode] with the assigned mode.
type LexerPushModeAction struct {
*BaseLexerAction
mode int
}
@ -169,10 +190,10 @@ func (l *LexerPushModeAction) String() string {
return "pushMode(" + strconv.Itoa(l.mode) + ")"
}
// Implements the {@code popMode} lexer action by calling {@link Lexer//popMode}.
// LexerPopModeAction implements the popMode lexer action by calling [Lexer.popMode].
//
// <p>The {@code popMode} command does not have any parameters, so l action is
// implemented as a singleton instance exposed by {@link //INSTANCE}.</p>
// The popMode command does not have any parameters, so this action is
// implemented as a singleton instance exposed by [LexerPopModeActionINSTANCE]
type LexerPopModeAction struct {
*BaseLexerAction
}
@ -224,11 +245,10 @@ func (l *LexerMoreAction) String() string {
return "more"
}
// Implements the {@code mode} lexer action by calling {@link Lexer//mode} with
// LexerModeAction implements the mode lexer action by calling [Lexer.mode] with
// the assigned mode.
type LexerModeAction struct {
*BaseLexerAction
mode int
}
@ -322,16 +342,19 @@ func (l *LexerCustomAction) Equals(other LexerAction) bool {
}
}
// Implements the {@code channel} lexer action by calling
// {@link Lexer//setChannel} with the assigned channel.
// Constructs a New{@code channel} action with the specified channel value.
// @param channel The channel value to pass to {@link Lexer//setChannel}.
// LexerChannelAction implements the channel lexer action by calling
// [Lexer.setChannel] with the assigned channel.
//
// Constructs a new channel action with the specified channel value.
type LexerChannelAction struct {
*BaseLexerAction
channel int
}
// NewLexerChannelAction creates a channel lexer action by calling
// [Lexer.setChannel] with the assigned channel.
//
// Constructs a new channel action with the specified channel value.
func NewLexerChannelAction(channel int) *LexerChannelAction {
l := new(LexerChannelAction)
l.BaseLexerAction = NewBaseLexerAction(LexerActionTypeChannel)
@ -375,25 +398,22 @@ func (l *LexerChannelAction) String() string {
// lexer actions, see {@link LexerActionExecutor//append} and
// {@link LexerActionExecutor//fixOffsetBeforeMatch}.</p>
// Constructs a Newindexed custom action by associating a character offset
// with a {@link LexerAction}.
//
// <p>Note: This class is only required for lexer actions for which
// {@link LexerAction//isPositionDependent} returns {@code true}.</p>
//
// @param offset The offset into the input {@link CharStream}, relative to
// the token start index, at which the specified lexer action should be
// executed.
// @param action The lexer action to execute at a particular offset in the
// input {@link CharStream}.
type LexerIndexedCustomAction struct {
*BaseLexerAction
offset int
lexerAction LexerAction
isPositionDependent bool
}
// NewLexerIndexedCustomAction constructs a new indexed custom action by associating a character offset
// with a [LexerAction].
//
// Note: This class is only required for lexer actions for which
// [LexerAction.isPositionDependent] returns true.
//
// The offset points into the input [CharStream], relative to
// the token start index, at which the specified lexerAction should be
// executed.
func NewLexerIndexedCustomAction(offset int, lexerAction LexerAction) *LexerIndexedCustomAction {
l := new(LexerIndexedCustomAction)

View File

@ -29,28 +29,20 @@ func NewLexerActionExecutor(lexerActions []LexerAction) *LexerActionExecutor {
l.lexerActions = lexerActions
// Caches the result of {@link //hashCode} since the hash code is an element
// of the performance-critical {@link LexerATNConfig//hashCode} operation.
l.cachedHash = murmurInit(57)
// of the performance-critical {@link ATNConfig//hashCode} operation.
l.cachedHash = murmurInit(0)
for _, a := range lexerActions {
l.cachedHash = murmurUpdate(l.cachedHash, a.Hash())
}
l.cachedHash = murmurFinish(l.cachedHash, len(lexerActions))
return l
}
// Creates a {@link LexerActionExecutor} which executes the actions for
// the input {@code lexerActionExecutor} followed by a specified
// {@code lexerAction}.
//
// @param lexerActionExecutor The executor for actions already traversed by
// the lexer while Matching a token within a particular
// {@link LexerATNConfig}. If this is {@code nil}, the method behaves as
// though it were an empty executor.
// @param lexerAction The lexer action to execute after the actions
// specified in {@code lexerActionExecutor}.
//
// @return A {@link LexerActionExecutor} for executing the combine actions
// of {@code lexerActionExecutor} and {@code lexerAction}.
// LexerActionExecutorappend creates a [LexerActionExecutor] which executes the actions for
// the input [LexerActionExecutor] followed by a specified
// [LexerAction].
// TODO: This does not match the Java code
func LexerActionExecutorappend(lexerActionExecutor *LexerActionExecutor, lexerAction LexerAction) *LexerActionExecutor {
if lexerActionExecutor == nil {
return NewLexerActionExecutor([]LexerAction{lexerAction})
@ -59,47 +51,42 @@ func LexerActionExecutorappend(lexerActionExecutor *LexerActionExecutor, lexerAc
return NewLexerActionExecutor(append(lexerActionExecutor.lexerActions, lexerAction))
}
// Creates a {@link LexerActionExecutor} which encodes the current offset
// fixOffsetBeforeMatch creates a [LexerActionExecutor] which encodes the current offset
// for position-dependent lexer actions.
//
// <p>Normally, when the executor encounters lexer actions where
// {@link LexerAction//isPositionDependent} returns {@code true}, it calls
// {@link IntStream//seek} on the input {@link CharStream} to set the input
// position to the <em>end</em> of the current token. This behavior provides
// for efficient DFA representation of lexer actions which appear at the end
// Normally, when the executor encounters lexer actions where
// [LexerAction.isPositionDependent] returns true, it calls
// [IntStream.Seek] on the input [CharStream] to set the input
// position to the end of the current token. This behavior provides
// for efficient [DFA] representation of lexer actions which appear at the end
// of a lexer rule, even when the lexer rule Matches a variable number of
// characters.</p>
// characters.
//
// <p>Prior to traversing a Match transition in the ATN, the current offset
// Prior to traversing a Match transition in the [ATN], the current offset
// from the token start index is assigned to all position-dependent lexer
// actions which have not already been assigned a fixed offset. By storing
// the offsets relative to the token start index, the DFA representation of
// the offsets relative to the token start index, the [DFA] representation of
// lexer actions which appear in the middle of tokens remains efficient due
// to sharing among tokens of the same length, regardless of their absolute
// position in the input stream.</p>
// to sharing among tokens of the same Length, regardless of their absolute
// position in the input stream.
//
// <p>If the current executor already has offsets assigned to all
// position-dependent lexer actions, the method returns {@code this}.</p>
// If the current executor already has offsets assigned to all
// position-dependent lexer actions, the method returns this instance.
//
// @param offset The current offset to assign to all position-dependent
// The offset is assigned to all position-dependent
// lexer actions which do not already have offsets assigned.
//
// @return A {@link LexerActionExecutor} which stores input stream offsets
// The func returns a [LexerActionExecutor] that stores input stream offsets
// for all position-dependent lexer actions.
// /
func (l *LexerActionExecutor) fixOffsetBeforeMatch(offset int) *LexerActionExecutor {
var updatedLexerActions []LexerAction
for i := 0; i < len(l.lexerActions); i++ {
_, ok := l.lexerActions[i].(*LexerIndexedCustomAction)
if l.lexerActions[i].getIsPositionDependent() && !ok {
if updatedLexerActions == nil {
updatedLexerActions = make([]LexerAction, 0)
for _, a := range l.lexerActions {
updatedLexerActions = append(updatedLexerActions, a)
}
updatedLexerActions = make([]LexerAction, 0, len(l.lexerActions))
updatedLexerActions = append(updatedLexerActions, l.lexerActions...)
}
updatedLexerActions[i] = NewLexerIndexedCustomAction(offset, l.lexerActions[i])
}
}

View File

@ -10,10 +10,8 @@ import (
"strings"
)
//goland:noinspection GoUnusedGlobalVariable
var (
LexerATNSimulatorDebug = false
LexerATNSimulatorDFADebug = false
LexerATNSimulatorMinDFAEdge = 0
LexerATNSimulatorMaxDFAEdge = 127 // forces unicode to stay in ATN
@ -32,11 +30,11 @@ type ILexerATNSimulator interface {
}
type LexerATNSimulator struct {
*BaseATNSimulator
BaseATNSimulator
recog Lexer
predictionMode int
mergeCache DoubleDict
mergeCache *JPCMap2
startIndex int
Line int
CharPositionInLine int
@ -46,27 +44,35 @@ type LexerATNSimulator struct {
}
func NewLexerATNSimulator(recog Lexer, atn *ATN, decisionToDFA []*DFA, sharedContextCache *PredictionContextCache) *LexerATNSimulator {
l := new(LexerATNSimulator)
l.BaseATNSimulator = NewBaseATNSimulator(atn, sharedContextCache)
l := &LexerATNSimulator{
BaseATNSimulator: BaseATNSimulator{
atn: atn,
sharedContextCache: sharedContextCache,
},
}
l.decisionToDFA = decisionToDFA
l.recog = recog
// The current token's starting index into the character stream.
// Shared across DFA to ATN simulation in case the ATN fails and the
// DFA did not have a previous accept state. In l case, we use the
// ATN-generated exception object.
l.startIndex = -1
// line number 1..n within the input///
// line number 1..n within the input
l.Line = 1
// The index of the character relative to the beginning of the line
// 0..n-1///
// 0..n-1
l.CharPositionInLine = 0
l.mode = LexerDefaultMode
// Used during DFA/ATN exec to record the most recent accept configuration
// info
l.prevAccept = NewSimState()
// done
return l
}
@ -114,7 +120,7 @@ func (l *LexerATNSimulator) reset() {
func (l *LexerATNSimulator) MatchATN(input CharStream) int {
startState := l.atn.modeToStartState[l.mode]
if LexerATNSimulatorDebug {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("MatchATN mode " + strconv.Itoa(l.mode) + " start: " + startState.String())
}
oldMode := l.mode
@ -126,7 +132,7 @@ func (l *LexerATNSimulator) MatchATN(input CharStream) int {
predict := l.execATN(input, next)
if LexerATNSimulatorDebug {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("DFA after MatchATN: " + l.decisionToDFA[oldMode].ToLexerString())
}
return predict
@ -134,18 +140,18 @@ func (l *LexerATNSimulator) MatchATN(input CharStream) int {
func (l *LexerATNSimulator) execATN(input CharStream, ds0 *DFAState) int {
if LexerATNSimulatorDebug {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("start state closure=" + ds0.configs.String())
}
if ds0.isAcceptState {
// allow zero-length tokens
// allow zero-Length tokens
l.captureSimState(l.prevAccept, input, ds0)
}
t := input.LA(1)
s := ds0 // s is current/from DFA state
for { // while more work
if LexerATNSimulatorDebug {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("execATN loop starting closure: " + s.configs.String())
}
@ -188,7 +194,7 @@ func (l *LexerATNSimulator) execATN(input CharStream, ds0 *DFAState) int {
}
}
t = input.LA(1)
s = target // flip current DFA target becomes Newsrc/from state
s = target // flip current DFA target becomes new src/from state
}
return l.failOrAccept(l.prevAccept, input, s.configs, t)
@ -214,43 +220,39 @@ func (l *LexerATNSimulator) getExistingTargetState(s *DFAState, t int) *DFAState
return nil
}
target := s.getIthEdge(t - LexerATNSimulatorMinDFAEdge)
if LexerATNSimulatorDebug && target != nil {
if runtimeConfig.lexerATNSimulatorDebug && target != nil {
fmt.Println("reuse state " + strconv.Itoa(s.stateNumber) + " edge to " + strconv.Itoa(target.stateNumber))
}
return target
}
// Compute a target state for an edge in the DFA, and attempt to add the
// computed state and corresponding edge to the DFA.
// computeTargetState computes a target state for an edge in the [DFA], and attempt to add the
// computed state and corresponding edge to the [DFA].
//
// @param input The input stream
// @param s The current DFA state
// @param t The next input symbol
//
// @return The computed target DFA state for the given input symbol
// {@code t}. If {@code t} does not lead to a valid DFA state, l method
// returns {@link //ERROR}.
// The func returns the computed target [DFA] state for the given input symbol t.
// If this does not lead to a valid [DFA] state, this method
// returns ATNSimulatorError.
func (l *LexerATNSimulator) computeTargetState(input CharStream, s *DFAState, t int) *DFAState {
reach := NewOrderedATNConfigSet()
// if we don't find an existing DFA state
// Fill reach starting from closure, following t transitions
l.getReachableConfigSet(input, s.configs, reach.BaseATNConfigSet, t)
l.getReachableConfigSet(input, s.configs, reach, t)
if len(reach.configs) == 0 { // we got nowhere on t from s
if !reach.hasSemanticContext {
// we got nowhere on t, don't panic out l knowledge it'd
// cause a failover from DFA later.
// cause a fail-over from DFA later.
l.addDFAEdge(s, t, ATNSimulatorError, nil)
}
// stop when we can't Match any more char
return ATNSimulatorError
}
// Add an edge from s to target DFA found/created for reach
return l.addDFAEdge(s, t, nil, reach.BaseATNConfigSet)
return l.addDFAEdge(s, t, nil, reach)
}
func (l *LexerATNSimulator) failOrAccept(prevAccept *SimState, input CharStream, reach ATNConfigSet, t int) int {
func (l *LexerATNSimulator) failOrAccept(prevAccept *SimState, input CharStream, reach *ATNConfigSet, t int) int {
if l.prevAccept.dfaState != nil {
lexerActionExecutor := prevAccept.dfaState.lexerActionExecutor
l.accept(input, lexerActionExecutor, l.startIndex, prevAccept.index, prevAccept.line, prevAccept.column)
@ -265,34 +267,35 @@ func (l *LexerATNSimulator) failOrAccept(prevAccept *SimState, input CharStream,
panic(NewLexerNoViableAltException(l.recog, input, l.startIndex, reach))
}
// Given a starting configuration set, figure out all ATN configurations
// we can reach upon input {@code t}. Parameter {@code reach} is a return
// parameter.
func (l *LexerATNSimulator) getReachableConfigSet(input CharStream, closure ATNConfigSet, reach ATNConfigSet, t int) {
// getReachableConfigSet when given a starting configuration set, figures out all [ATN] configurations
// we can reach upon input t.
//
// Parameter reach is a return parameter.
func (l *LexerATNSimulator) getReachableConfigSet(input CharStream, closure *ATNConfigSet, reach *ATNConfigSet, t int) {
// l is used to Skip processing for configs which have a lower priority
// than a config that already reached an accept state for the same rule
// than a runtimeConfig that already reached an accept state for the same rule
SkipAlt := ATNInvalidAltNumber
for _, cfg := range closure.GetItems() {
currentAltReachedAcceptState := (cfg.GetAlt() == SkipAlt)
if currentAltReachedAcceptState && cfg.(*LexerATNConfig).passedThroughNonGreedyDecision {
for _, cfg := range closure.configs {
currentAltReachedAcceptState := cfg.GetAlt() == SkipAlt
if currentAltReachedAcceptState && cfg.passedThroughNonGreedyDecision {
continue
}
if LexerATNSimulatorDebug {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Printf("testing %s at %s\n", l.GetTokenName(t), cfg.String()) // l.recog, true))
fmt.Printf("testing %s at %s\n", l.GetTokenName(t), cfg.String())
}
for _, trans := range cfg.GetState().GetTransitions() {
target := l.getReachableTarget(trans, t)
if target != nil {
lexerActionExecutor := cfg.(*LexerATNConfig).lexerActionExecutor
lexerActionExecutor := cfg.lexerActionExecutor
if lexerActionExecutor != nil {
lexerActionExecutor = lexerActionExecutor.fixOffsetBeforeMatch(input.Index() - l.startIndex)
}
treatEOFAsEpsilon := (t == TokenEOF)
config := NewLexerATNConfig3(cfg.(*LexerATNConfig), target, lexerActionExecutor)
treatEOFAsEpsilon := t == TokenEOF
config := NewLexerATNConfig3(cfg, target, lexerActionExecutor)
if l.closure(input, config, reach,
currentAltReachedAcceptState, true, treatEOFAsEpsilon) {
// any remaining configs for l alt have a lower priority
@ -305,7 +308,7 @@ func (l *LexerATNSimulator) getReachableConfigSet(input CharStream, closure ATNC
}
func (l *LexerATNSimulator) accept(input CharStream, lexerActionExecutor *LexerActionExecutor, startIndex, index, line, charPos int) {
if LexerATNSimulatorDebug {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Printf("ACTION %v\n", lexerActionExecutor)
}
// seek to after last char in token
@ -325,7 +328,7 @@ func (l *LexerATNSimulator) getReachableTarget(trans Transition, t int) ATNState
return nil
}
func (l *LexerATNSimulator) computeStartState(input CharStream, p ATNState) *OrderedATNConfigSet {
func (l *LexerATNSimulator) computeStartState(input CharStream, p ATNState) *ATNConfigSet {
configs := NewOrderedATNConfigSet()
for i := 0; i < len(p.GetTransitions()); i++ {
target := p.GetTransitions()[i].getTarget()
@ -336,25 +339,24 @@ func (l *LexerATNSimulator) computeStartState(input CharStream, p ATNState) *Ord
return configs
}
// Since the alternatives within any lexer decision are ordered by
// preference, l method stops pursuing the closure as soon as an accept
// closure since the alternatives within any lexer decision are ordered by
// preference, this method stops pursuing the closure as soon as an accept
// state is reached. After the first accept state is reached by depth-first
// search from {@code config}, all other (potentially reachable) states for
// l rule would have a lower priority.
// search from runtimeConfig, all other (potentially reachable) states for
// this rule would have a lower priority.
//
// @return {@code true} if an accept state is reached, otherwise
// {@code false}.
func (l *LexerATNSimulator) closure(input CharStream, config *LexerATNConfig, configs ATNConfigSet,
// The func returns true if an accept state is reached.
func (l *LexerATNSimulator) closure(input CharStream, config *ATNConfig, configs *ATNConfigSet,
currentAltReachedAcceptState, speculative, treatEOFAsEpsilon bool) bool {
if LexerATNSimulatorDebug {
fmt.Println("closure(" + config.String() + ")") // config.String(l.recog, true) + ")")
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("closure(" + config.String() + ")")
}
_, ok := config.state.(*RuleStopState)
if ok {
if LexerATNSimulatorDebug {
if runtimeConfig.lexerATNSimulatorDebug {
if l.recog != nil {
fmt.Printf("closure at %s rule stop %s\n", l.recog.GetRuleNames()[config.state.GetRuleIndex()], config)
} else {
@ -401,10 +403,10 @@ func (l *LexerATNSimulator) closure(input CharStream, config *LexerATNConfig, co
}
// side-effect: can alter configs.hasSemanticContext
func (l *LexerATNSimulator) getEpsilonTarget(input CharStream, config *LexerATNConfig, trans Transition,
configs ATNConfigSet, speculative, treatEOFAsEpsilon bool) *LexerATNConfig {
func (l *LexerATNSimulator) getEpsilonTarget(input CharStream, config *ATNConfig, trans Transition,
configs *ATNConfigSet, speculative, treatEOFAsEpsilon bool) *ATNConfig {
var cfg *LexerATNConfig
var cfg *ATNConfig
if trans.getSerializationType() == TransitionRULE {
@ -435,10 +437,10 @@ func (l *LexerATNSimulator) getEpsilonTarget(input CharStream, config *LexerATNC
pt := trans.(*PredicateTransition)
if LexerATNSimulatorDebug {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("EVAL rule " + strconv.Itoa(trans.(*PredicateTransition).ruleIndex) + ":" + strconv.Itoa(pt.predIndex))
}
configs.SetHasSemanticContext(true)
configs.hasSemanticContext = true
if l.evaluatePredicate(input, pt.ruleIndex, pt.predIndex, speculative) {
cfg = NewLexerATNConfig4(config, trans.getTarget())
}
@ -449,7 +451,7 @@ func (l *LexerATNSimulator) getEpsilonTarget(input CharStream, config *LexerATNC
// TODO: if the entry rule is invoked recursively, some
// actions may be executed during the recursive call. The
// problem can appear when hasEmptyPath() is true but
// isEmpty() is false. In l case, the config needs to be
// isEmpty() is false. In this case, the config needs to be
// split into two contexts - one with just the empty path
// and another with everything but the empty path.
// Unfortunately, the current algorithm does not allow
@ -476,26 +478,18 @@ func (l *LexerATNSimulator) getEpsilonTarget(input CharStream, config *LexerATNC
return cfg
}
// Evaluate a predicate specified in the lexer.
// evaluatePredicate eEvaluates a predicate specified in the lexer.
//
// <p>If {@code speculative} is {@code true}, l method was called before
// {@link //consume} for the Matched character. This method should call
// {@link //consume} before evaluating the predicate to ensure position
// sensitive values, including {@link Lexer//GetText}, {@link Lexer//GetLine},
// and {@link Lexer//getcolumn}, properly reflect the current
// lexer state. This method should restore {@code input} and the simulator
// to the original state before returning (i.e. undo the actions made by the
// call to {@link //consume}.</p>
// If speculative is true, this method was called before
// [consume] for the Matched character. This method should call
// [consume] before evaluating the predicate to ensure position
// sensitive values, including [GetText], [GetLine],
// and [GetColumn], properly reflect the current
// lexer state. This method should restore input and the simulator
// to the original state before returning, i.e. undo the actions made by the
// call to [Consume].
//
// @param input The input stream.
// @param ruleIndex The rule containing the predicate.
// @param predIndex The index of the predicate within the rule.
// @param speculative {@code true} if the current index in {@code input} is
// one character before the predicate's location.
//
// @return {@code true} if the specified predicate evaluates to
// {@code true}.
// /
// The func returns true if the specified predicate evaluates to true.
func (l *LexerATNSimulator) evaluatePredicate(input CharStream, ruleIndex, predIndex int, speculative bool) bool {
// assume true if no recognizer was provided
if l.recog == nil {
@ -527,7 +521,7 @@ func (l *LexerATNSimulator) captureSimState(settings *SimState, input CharStream
settings.dfaState = dfaState
}
func (l *LexerATNSimulator) addDFAEdge(from *DFAState, tk int, to *DFAState, cfgs ATNConfigSet) *DFAState {
func (l *LexerATNSimulator) addDFAEdge(from *DFAState, tk int, to *DFAState, cfgs *ATNConfigSet) *DFAState {
if to == nil && cfgs != nil {
// leading to l call, ATNConfigSet.hasSemanticContext is used as a
// marker indicating dynamic predicate evaluation makes l edge
@ -539,10 +533,9 @@ func (l *LexerATNSimulator) addDFAEdge(from *DFAState, tk int, to *DFAState, cfg
// TJP notes: next time through the DFA, we see a pred again and eval.
// If that gets us to a previously created (but dangling) DFA
// state, we can continue in pure DFA mode from there.
// /
suppressEdge := cfgs.HasSemanticContext()
cfgs.SetHasSemanticContext(false)
//
suppressEdge := cfgs.hasSemanticContext
cfgs.hasSemanticContext = false
to = l.addDFAState(cfgs, true)
if suppressEdge {
@ -554,7 +547,7 @@ func (l *LexerATNSimulator) addDFAEdge(from *DFAState, tk int, to *DFAState, cfg
// Only track edges within the DFA bounds
return to
}
if LexerATNSimulatorDebug {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("EDGE " + from.String() + " -> " + to.String() + " upon " + strconv.Itoa(tk))
}
l.atn.edgeMu.Lock()
@ -572,13 +565,12 @@ func (l *LexerATNSimulator) addDFAEdge(from *DFAState, tk int, to *DFAState, cfg
// configurations already. This method also detects the first
// configuration containing an ATN rule stop state. Later, when
// traversing the DFA, we will know which rule to accept.
func (l *LexerATNSimulator) addDFAState(configs ATNConfigSet, suppressEdge bool) *DFAState {
func (l *LexerATNSimulator) addDFAState(configs *ATNConfigSet, suppressEdge bool) *DFAState {
proposed := NewDFAState(-1, configs)
var firstConfigWithRuleStopState ATNConfig
for _, cfg := range configs.GetItems() {
var firstConfigWithRuleStopState *ATNConfig
for _, cfg := range configs.configs {
_, ok := cfg.GetState().(*RuleStopState)
if ok {
@ -588,14 +580,14 @@ func (l *LexerATNSimulator) addDFAState(configs ATNConfigSet, suppressEdge bool)
}
if firstConfigWithRuleStopState != nil {
proposed.isAcceptState = true
proposed.lexerActionExecutor = firstConfigWithRuleStopState.(*LexerATNConfig).lexerActionExecutor
proposed.lexerActionExecutor = firstConfigWithRuleStopState.lexerActionExecutor
proposed.setPrediction(l.atn.ruleToTokenType[firstConfigWithRuleStopState.GetState().GetRuleIndex()])
}
dfa := l.decisionToDFA[l.mode]
l.atn.stateMu.Lock()
defer l.atn.stateMu.Unlock()
existing, present := dfa.states.Get(proposed)
existing, present := dfa.Get(proposed)
if present {
// This state was already present, so just return it.
@ -605,10 +597,11 @@ func (l *LexerATNSimulator) addDFAState(configs ATNConfigSet, suppressEdge bool)
// We need to add the new state
//
proposed.stateNumber = dfa.states.Len()
configs.SetReadOnly(true)
proposed.stateNumber = dfa.Len()
configs.readOnly = true
configs.configLookup = nil // Not needed now
proposed.configs = configs
dfa.states.Put(proposed)
dfa.Put(proposed)
}
if !suppressEdge {
dfa.setS0(proposed)
@ -620,7 +613,7 @@ func (l *LexerATNSimulator) getDFA(mode int) *DFA {
return l.decisionToDFA[mode]
}
// Get the text Matched so far for the current token.
// GetText returns the text [Match]ed so far for the current token.
func (l *LexerATNSimulator) GetText(input CharStream) string {
// index is first lookahead char, don't include.
return input.GetTextFromInterval(NewInterval(l.startIndex, input.Index()-1))

View File

@ -14,11 +14,11 @@ func NewLL1Analyzer(atn *ATN) *LL1Analyzer {
return la
}
// - Special value added to the lookahead sets to indicate that we hit
// a predicate during analysis if {@code seeThruPreds==false}.
//
// /
const (
// LL1AnalyzerHitPred is a special value added to the lookahead sets to indicate that we hit
// a predicate during analysis if
//
// seeThruPreds==false
LL1AnalyzerHitPred = TokenInvalidType
)
@ -38,11 +38,12 @@ func (la *LL1Analyzer) getDecisionLookahead(s ATNState) []*IntervalSet {
count := len(s.GetTransitions())
look := make([]*IntervalSet, count)
for alt := 0; alt < count; alt++ {
look[alt] = NewIntervalSet()
lookBusy := NewJStore[ATNConfig, Comparator[ATNConfig]](aConfEqInst)
seeThruPreds := false // fail to get lookahead upon pred
la.look1(s.GetTransitions()[alt].getTarget(), nil, BasePredictionContextEMPTY, look[alt], lookBusy, NewBitSet(), seeThruPreds, false)
// Wipe out lookahead for la alternative if we found nothing
lookBusy := NewJStore[*ATNConfig, Comparator[*ATNConfig]](aConfEqInst, ClosureBusyCollection, "LL1Analyzer.getDecisionLookahead for lookBusy")
la.look1(s.GetTransitions()[alt].getTarget(), nil, BasePredictionContextEMPTY, look[alt], lookBusy, NewBitSet(), false, false)
// Wipe out lookahead for la alternative if we found nothing,
// or we had a predicate when we !seeThruPreds
if look[alt].length() == 0 || look[alt].contains(LL1AnalyzerHitPred) {
look[alt] = nil
@ -51,32 +52,31 @@ func (la *LL1Analyzer) getDecisionLookahead(s ATNState) []*IntervalSet {
return look
}
// *
// Compute set of tokens that can follow {@code s} in the ATN in the
// specified {@code ctx}.
// Look computes the set of tokens that can follow s in the [ATN] in the
// specified ctx.
//
// <p>If {@code ctx} is {@code nil} and the end of the rule containing
// {@code s} is reached, {@link Token//EPSILON} is added to the result set.
// If {@code ctx} is not {@code nil} and the end of the outermost rule is
// reached, {@link Token//EOF} is added to the result set.</p>
// If ctx is nil and the end of the rule containing
// s is reached, [EPSILON] is added to the result set.
//
// @param s the ATN state
// @param stopState the ATN state to stop at. This can be a
// {@link BlockEndState} to detect epsilon paths through a closure.
// @param ctx the complete parser context, or {@code nil} if the context
// If ctx is not nil and the end of the outermost rule is
// reached, [EOF] is added to the result set.
//
// Parameter s the ATN state, and stopState is the ATN state to stop at. This can be a
// [BlockEndState] to detect epsilon paths through a closure.
//
// Parameter ctx is the complete parser context, or nil if the context
// should be ignored
//
// @return The set of tokens that can follow {@code s} in the ATN in the
// specified {@code ctx}.
// /
// The func returns the set of tokens that can follow s in the [ATN] in the
// specified ctx.
func (la *LL1Analyzer) Look(s, stopState ATNState, ctx RuleContext) *IntervalSet {
r := NewIntervalSet()
seeThruPreds := true // ignore preds get all lookahead
var lookContext PredictionContext
var lookContext *PredictionContext
if ctx != nil {
lookContext = predictionContextFromRuleContext(s.GetATN(), ctx)
}
la.look1(s, stopState, lookContext, r, NewJStore[ATNConfig, Comparator[ATNConfig]](aConfEqInst), NewBitSet(), seeThruPreds, true)
la.look1(s, stopState, lookContext, r, NewJStore[*ATNConfig, Comparator[*ATNConfig]](aConfEqInst, ClosureBusyCollection, "LL1Analyzer.Look for la.look1()"),
NewBitSet(), true, true)
return r
}
@ -110,16 +110,17 @@ func (la *LL1Analyzer) Look(s, stopState ATNState, ctx RuleContext) *IntervalSet
// outermost context is reached. This parameter has no effect if {@code ctx}
// is {@code nil}.
func (la *LL1Analyzer) look2(s, stopState ATNState, ctx PredictionContext, look *IntervalSet, lookBusy *JStore[ATNConfig, Comparator[ATNConfig]], calledRuleStack *BitSet, seeThruPreds, addEOF bool, i int) {
func (la *LL1Analyzer) look2(_, stopState ATNState, ctx *PredictionContext, look *IntervalSet, lookBusy *JStore[*ATNConfig, Comparator[*ATNConfig]],
calledRuleStack *BitSet, seeThruPreds, addEOF bool, i int) {
returnState := la.atn.states[ctx.getReturnState(i)]
la.look1(returnState, stopState, ctx.GetParent(i), look, lookBusy, calledRuleStack, seeThruPreds, addEOF)
}
func (la *LL1Analyzer) look1(s, stopState ATNState, ctx PredictionContext, look *IntervalSet, lookBusy *JStore[ATNConfig, Comparator[ATNConfig]], calledRuleStack *BitSet, seeThruPreds, addEOF bool) {
func (la *LL1Analyzer) look1(s, stopState ATNState, ctx *PredictionContext, look *IntervalSet, lookBusy *JStore[*ATNConfig, Comparator[*ATNConfig]], calledRuleStack *BitSet, seeThruPreds, addEOF bool) {
c := NewBaseATNConfig6(s, 0, ctx)
c := NewATNConfig6(s, 0, ctx)
if lookBusy.Contains(c) {
return
@ -151,7 +152,7 @@ func (la *LL1Analyzer) look1(s, stopState ATNState, ctx PredictionContext, look
return
}
if ctx != BasePredictionContextEMPTY {
if ctx.pcType != PredictionContextEmpty {
removed := calledRuleStack.contains(s.GetRuleIndex())
defer func() {
if removed {
@ -202,7 +203,8 @@ func (la *LL1Analyzer) look1(s, stopState ATNState, ctx PredictionContext, look
}
}
func (la *LL1Analyzer) look3(stopState ATNState, ctx PredictionContext, look *IntervalSet, lookBusy *JStore[ATNConfig, Comparator[ATNConfig]], calledRuleStack *BitSet, seeThruPreds, addEOF bool, t1 *RuleTransition) {
func (la *LL1Analyzer) look3(stopState ATNState, ctx *PredictionContext, look *IntervalSet, lookBusy *JStore[*ATNConfig, Comparator[*ATNConfig]],
calledRuleStack *BitSet, seeThruPreds, addEOF bool, t1 *RuleTransition) {
newContext := SingletonBasePredictionContextCreate(ctx, t1.followState.GetStateNumber())

47
vendor/github.com/antlr4-go/antlr/v4/nostatistics.go generated vendored Normal file
View File

@ -0,0 +1,47 @@
//go:build !antlr.stats
package antlr
// This file is compiled when the build configuration antlr.stats is not enabled.
// which then allows the compiler to optimize out all the code that is not used.
const collectStats = false
// goRunStats is a dummy struct used when build configuration antlr.stats is not enabled.
type goRunStats struct {
}
var Statistics = &goRunStats{}
func (s *goRunStats) AddJStatRec(_ *JStatRec) {
// Do nothing - compiler will optimize this out (hopefully)
}
func (s *goRunStats) CollectionAnomalies() {
// Do nothing - compiler will optimize this out (hopefully)
}
func (s *goRunStats) Reset() {
// Do nothing - compiler will optimize this out (hopefully)
}
func (s *goRunStats) Report(dir string, prefix string) error {
// Do nothing - compiler will optimize this out (hopefully)
return nil
}
func (s *goRunStats) Analyze() {
// Do nothing - compiler will optimize this out (hopefully)
}
type statsOption func(*goRunStats) error
func (s *goRunStats) Configure(options ...statsOption) error {
// Do nothing - compiler will optimize this out (hopefully)
return nil
}
func WithTopN(topN int) statsOption {
return func(s *goRunStats) error {
return nil
}
}

View File

@ -48,8 +48,10 @@ type BaseParser struct {
_SyntaxErrors int
}
// p.is all the parsing support code essentially most of it is error
// recovery stuff.//
// NewBaseParser contains all the parsing support code to embed in parsers. Essentially most of it is error
// recovery stuff.
//
//goland:noinspection GoUnusedExportedFunction
func NewBaseParser(input TokenStream) *BaseParser {
p := new(BaseParser)
@ -58,39 +60,46 @@ func NewBaseParser(input TokenStream) *BaseParser {
// The input stream.
p.input = nil
// The error handling strategy for the parser. The default value is a new
// instance of {@link DefaultErrorStrategy}.
p.errHandler = NewDefaultErrorStrategy()
p.precedenceStack = make([]int, 0)
p.precedenceStack.Push(0)
// The {@link ParserRuleContext} object for the currently executing rule.
// The ParserRuleContext object for the currently executing rule.
// p.is always non-nil during the parsing process.
p.ctx = nil
// Specifies whether or not the parser should construct a parse tree during
// Specifies whether the parser should construct a parse tree during
// the parsing process. The default value is {@code true}.
p.BuildParseTrees = true
// When {@link //setTrace}{@code (true)} is called, a reference to the
// {@link TraceListener} is stored here so it can be easily removed in a
// later call to {@link //setTrace}{@code (false)}. The listener itself is
// When setTrace(true) is called, a reference to the
// TraceListener is stored here, so it can be easily removed in a
// later call to setTrace(false). The listener itself is
// implemented as a parser listener so p.field is not directly used by
// other parser methods.
p.tracer = nil
// The list of {@link ParseTreeListener} listeners registered to receive
// The list of ParseTreeListener listeners registered to receive
// events during the parse.
p.parseListeners = nil
// The number of syntax errors Reported during parsing. p.value is
// incremented each time {@link //NotifyErrorListeners} is called.
// incremented each time NotifyErrorListeners is called.
p._SyntaxErrors = 0
p.SetInputStream(input)
return p
}
// p.field maps from the serialized ATN string to the deserialized {@link
// ATN} with
// This field maps from the serialized ATN string to the deserialized [ATN] with
// bypass alternatives.
//
// @see ATNDeserializationOptions//isGenerateRuleBypassTransitions()
// [ATNDeserializationOptions.isGenerateRuleBypassTransitions]
//
//goland:noinspection GoUnusedGlobalVariable
var bypassAltsAtnCache = make(map[string]int)
// reset the parser's state//
@ -143,10 +152,13 @@ func (p *BaseParser) Match(ttype int) Token {
p.Consume()
} else {
t = p.errHandler.RecoverInline(p)
if p.HasError() {
return nil
}
if p.BuildParseTrees && t.GetTokenIndex() == -1 {
// we must have conjured up a Newtoken during single token
// insertion
// if it's not the current symbol
// we must have conjured up a new token during single token
// insertion if it's not the current symbol
p.ctx.AddErrorNode(t)
}
}
@ -178,9 +190,8 @@ func (p *BaseParser) MatchWildcard() Token {
} else {
t = p.errHandler.RecoverInline(p)
if p.BuildParseTrees && t.GetTokenIndex() == -1 {
// we must have conjured up a Newtoken during single token
// insertion
// if it's not the current symbol
// we must have conjured up a new token during single token
// insertion if it's not the current symbol
p.ctx.AddErrorNode(t)
}
}
@ -202,33 +213,27 @@ func (p *BaseParser) GetParseListeners() []ParseTreeListener {
return p.parseListeners
}
// Registers {@code listener} to receive events during the parsing process.
// AddParseListener registers listener to receive events during the parsing process.
//
// <p>To support output-preserving grammar transformations (including but not
// To support output-preserving grammar transformations (including but not
// limited to left-recursion removal, automated left-factoring, and
// optimized code generation), calls to listener methods during the parse
// may differ substantially from calls made by
// {@link ParseTreeWalker//DEFAULT} used after the parse is complete. In
// [ParseTreeWalker.DEFAULT] used after the parse is complete. In
// particular, rule entry and exit events may occur in a different order
// during the parse than after the parser. In addition, calls to certain
// rule entry methods may be omitted.</p>
// rule entry methods may be omitted.
//
// <p>With the following specific exceptions, calls to listener events are
// <em>deterministic</em>, i.e. for identical input the calls to listener
// methods will be the same.</p>
// With the following specific exceptions, calls to listener events are
// deterministic, i.e. for identical input the calls to listener
// methods will be the same.
//
// <ul>
// <li>Alterations to the grammar used to generate code may change the
// behavior of the listener calls.</li>
// <li>Alterations to the command line options passed to ANTLR 4 when
// generating the parser may change the behavior of the listener calls.</li>
// <li>Changing the version of the ANTLR Tool used to generate the parser
// may change the behavior of the listener calls.</li>
// </ul>
//
// @param listener the listener to add
//
// @panics nilPointerException if {@code} listener is {@code nil}
// - Alterations to the grammar used to generate code may change the
// behavior of the listener calls.
// - Alterations to the command line options passed to ANTLR 4 when
// generating the parser may change the behavior of the listener calls.
// - Changing the version of the ANTLR Tool used to generate the parser
// may change the behavior of the listener calls.
func (p *BaseParser) AddParseListener(listener ParseTreeListener) {
if listener == nil {
panic("listener")
@ -239,11 +244,10 @@ func (p *BaseParser) AddParseListener(listener ParseTreeListener) {
p.parseListeners = append(p.parseListeners, listener)
}
// Remove {@code listener} from the list of parse listeners.
// RemoveParseListener removes listener from the list of parse listeners.
//
// <p>If {@code listener} is {@code nil} or has not been added as a parse
// listener, p.method does nothing.</p>
// @param listener the listener to remove
// If listener is nil or has not been added as a parse
// listener, this func does nothing.
func (p *BaseParser) RemoveParseListener(listener ParseTreeListener) {
if p.parseListeners != nil {
@ -274,7 +278,7 @@ func (p *BaseParser) removeParseListeners() {
p.parseListeners = nil
}
// Notify any parse listeners of an enter rule event.
// TriggerEnterRuleEvent notifies all parse listeners of an enter rule event.
func (p *BaseParser) TriggerEnterRuleEvent() {
if p.parseListeners != nil {
ctx := p.ctx
@ -285,9 +289,7 @@ func (p *BaseParser) TriggerEnterRuleEvent() {
}
}
// Notify any parse listeners of an exit rule event.
//
// @see //addParseListener
// TriggerExitRuleEvent notifies any parse listeners of an exit rule event.
func (p *BaseParser) TriggerExitRuleEvent() {
if p.parseListeners != nil {
// reverse order walk of listeners
@ -314,19 +316,16 @@ func (p *BaseParser) GetTokenFactory() TokenFactory {
return p.input.GetTokenSource().GetTokenFactory()
}
// Tell our token source and error strategy about a Newway to create tokens.//
// setTokenFactory is used to tell our token source and error strategy about a new way to create tokens.
func (p *BaseParser) setTokenFactory(factory TokenFactory) {
p.input.GetTokenSource().setTokenFactory(factory)
}
// The ATN with bypass alternatives is expensive to create so we create it
// GetATNWithBypassAlts - the ATN with bypass alternatives is expensive to create, so we create it
// lazily.
//
// @panics UnsupportedOperationException if the current parser does not
// implement the {@link //getSerializedATN()} method.
func (p *BaseParser) GetATNWithBypassAlts() {
// TODO
// TODO - Implement this?
panic("Not implemented!")
// serializedAtn := p.getSerializedATN()
@ -354,6 +353,7 @@ func (p *BaseParser) GetATNWithBypassAlts() {
// String id = m.Get("ID")
// </pre>
//goland:noinspection GoUnusedParameter
func (p *BaseParser) compileParseTreePattern(pattern, patternRuleIndex, lexer Lexer) {
panic("NewParseTreePatternMatcher not implemented!")
@ -386,14 +386,16 @@ func (p *BaseParser) GetTokenStream() TokenStream {
return p.input
}
// Set the token stream and reset the parser.//
// SetTokenStream installs input as the token stream and resets the parser.
func (p *BaseParser) SetTokenStream(input TokenStream) {
p.input = nil
p.reset()
p.input = input
}
// Match needs to return the current input symbol, which gets put
// GetCurrentToken returns the current token at LT(1).
//
// [Match] needs to return the current input symbol, which gets put
// into the label for the associated token ref e.g., x=ID.
func (p *BaseParser) GetCurrentToken() Token {
return p.input.LT(1)
@ -446,7 +448,7 @@ func (p *BaseParser) addContextToParseTree() {
}
}
func (p *BaseParser) EnterRule(localctx ParserRuleContext, state, ruleIndex int) {
func (p *BaseParser) EnterRule(localctx ParserRuleContext, state, _ int) {
p.SetState(state)
p.ctx = localctx
p.ctx.SetStart(p.input.LT(1))
@ -474,7 +476,7 @@ func (p *BaseParser) ExitRule() {
func (p *BaseParser) EnterOuterAlt(localctx ParserRuleContext, altNum int) {
localctx.SetAltNumber(altNum)
// if we have Newlocalctx, make sure we replace existing ctx
// if we have a new localctx, make sure we replace existing ctx
// that is previous child of parse tree
if p.BuildParseTrees && p.ctx != localctx {
if p.ctx.GetParent() != nil {
@ -498,7 +500,7 @@ func (p *BaseParser) GetPrecedence() int {
return p.precedenceStack[len(p.precedenceStack)-1]
}
func (p *BaseParser) EnterRecursionRule(localctx ParserRuleContext, state, ruleIndex, precedence int) {
func (p *BaseParser) EnterRecursionRule(localctx ParserRuleContext, state, _, precedence int) {
p.SetState(state)
p.precedenceStack.Push(precedence)
p.ctx = localctx
@ -512,7 +514,7 @@ func (p *BaseParser) EnterRecursionRule(localctx ParserRuleContext, state, ruleI
//
// Like {@link //EnterRule} but for recursive rules.
func (p *BaseParser) PushNewRecursionContext(localctx ParserRuleContext, state, ruleIndex int) {
func (p *BaseParser) PushNewRecursionContext(localctx ParserRuleContext, state, _ int) {
previous := p.ctx
previous.SetParent(localctx)
previous.SetInvokingState(state)
@ -530,7 +532,7 @@ func (p *BaseParser) PushNewRecursionContext(localctx ParserRuleContext, state,
}
func (p *BaseParser) UnrollRecursionContexts(parentCtx ParserRuleContext) {
p.precedenceStack.Pop()
_, _ = p.precedenceStack.Pop()
p.ctx.SetStop(p.input.LT(-1))
retCtx := p.ctx // save current ctx (return value)
// unroll so ctx is as it was before call to recursive method
@ -561,29 +563,22 @@ func (p *BaseParser) GetInvokingContext(ruleIndex int) ParserRuleContext {
return nil
}
func (p *BaseParser) Precpred(localctx RuleContext, precedence int) bool {
func (p *BaseParser) Precpred(_ RuleContext, precedence int) bool {
return precedence >= p.precedenceStack[len(p.precedenceStack)-1]
}
//goland:noinspection GoUnusedParameter
func (p *BaseParser) inContext(context ParserRuleContext) bool {
// TODO: useful in parser?
return false
}
//
// Checks whether or not {@code symbol} can follow the current state in the
// ATN. The behavior of p.method is equivalent to the following, but is
// IsExpectedToken checks whether symbol can follow the current state in the
// {ATN}. The behavior of p.method is equivalent to the following, but is
// implemented such that the complete context-sensitive follow set does not
// need to be explicitly constructed.
//
// <pre>
// return getExpectedTokens().contains(symbol)
// </pre>
//
// @param symbol the symbol type to check
// @return {@code true} if {@code symbol} can follow the current state in
// the ATN, otherwise {@code false}.
// return getExpectedTokens().contains(symbol)
func (p *BaseParser) IsExpectedToken(symbol int) bool {
atn := p.Interpreter.atn
ctx := p.ctx
@ -611,11 +606,9 @@ func (p *BaseParser) IsExpectedToken(symbol int) bool {
return false
}
// Computes the set of input symbols which could follow the current parser
// state and context, as given by {@link //GetState} and {@link //GetContext},
// GetExpectedTokens and returns the set of input symbols which could follow the current parser
// state and context, as given by [GetState] and [GetContext],
// respectively.
//
// @see ATN//getExpectedTokens(int, RuleContext)
func (p *BaseParser) GetExpectedTokens() *IntervalSet {
return p.Interpreter.atn.getExpectedTokens(p.state, p.ctx)
}
@ -626,7 +619,7 @@ func (p *BaseParser) GetExpectedTokensWithinCurrentRule() *IntervalSet {
return atn.NextTokens(s, nil)
}
// Get a rule's index (i.e., {@code RULE_ruleName} field) or -1 if not found.//
// GetRuleIndex get a rule's index (i.e., RULE_ruleName field) or -1 if not found.
func (p *BaseParser) GetRuleIndex(ruleName string) int {
var ruleIndex, ok = p.GetRuleIndexMap()[ruleName]
if ok {
@ -636,13 +629,10 @@ func (p *BaseParser) GetRuleIndex(ruleName string) int {
return -1
}
// Return List&ltString&gt of the rule names in your parser instance
// GetRuleInvocationStack returns a list of the rule names in your parser instance
// leading up to a call to the current rule. You could override if
// you want more details such as the file/line info of where
// in the ATN a rule is invoked.
//
// this very useful for error messages.
func (p *BaseParser) GetRuleInvocationStack(c ParserRuleContext) []string {
if c == nil {
c = p.ctx
@ -668,16 +658,16 @@ func (p *BaseParser) GetRuleInvocationStack(c ParserRuleContext) []string {
return stack
}
// For debugging and other purposes.//
// GetDFAStrings returns a list of all DFA states used for debugging purposes
func (p *BaseParser) GetDFAStrings() string {
return fmt.Sprint(p.Interpreter.decisionToDFA)
}
// For debugging and other purposes.//
// DumpDFA prints the whole of the DFA for debugging
func (p *BaseParser) DumpDFA() {
seenOne := false
for _, dfa := range p.Interpreter.decisionToDFA {
if dfa.states.Len() > 0 {
if dfa.Len() > 0 {
if seenOne {
fmt.Println()
}
@ -692,8 +682,10 @@ func (p *BaseParser) GetSourceName() string {
return p.GrammarFileName
}
// During a parse is sometimes useful to listen in on the rule entry and exit
// events as well as token Matches. p.is for quick and dirty debugging.
// SetTrace installs a trace listener for the parse.
//
// During a parse it is sometimes useful to listen in on the rule entry and exit
// events as well as token Matches. This is for quick and dirty debugging.
func (p *BaseParser) SetTrace(trace *TraceListener) {
if trace == nil {
p.RemoveParseListener(p.tracer)

View File

@ -31,7 +31,9 @@ type ParserRuleContext interface {
}
type BaseParserRuleContext struct {
*BaseRuleContext
parentCtx RuleContext
invokingState int
RuleIndex int
start, stop Token
exception RecognitionException
@ -40,8 +42,22 @@ type BaseParserRuleContext struct {
func NewBaseParserRuleContext(parent ParserRuleContext, invokingStateNumber int) *BaseParserRuleContext {
prc := new(BaseParserRuleContext)
InitBaseParserRuleContext(prc, parent, invokingStateNumber)
return prc
}
prc.BaseRuleContext = NewBaseRuleContext(parent, invokingStateNumber)
func InitBaseParserRuleContext(prc *BaseParserRuleContext, parent ParserRuleContext, invokingStateNumber int) {
// What context invoked b rule?
prc.parentCtx = parent
// What state invoked the rule associated with b context?
// The "return address" is the followState of invokingState
// If parent is nil, b should be -1.
if parent == nil {
prc.invokingState = -1
} else {
prc.invokingState = invokingStateNumber
}
prc.RuleIndex = -1
// * If we are debugging or building a parse tree for a Visitor,
@ -56,8 +72,6 @@ func NewBaseParserRuleContext(parent ParserRuleContext, invokingStateNumber int)
// The exception that forced prc rule to return. If the rule successfully
// completed, prc is {@code nil}.
prc.exception = nil
return prc
}
func (prc *BaseParserRuleContext) SetException(e RecognitionException) {
@ -90,14 +104,15 @@ func (prc *BaseParserRuleContext) GetText() string {
return s
}
// Double dispatch methods for listeners
func (prc *BaseParserRuleContext) EnterRule(listener ParseTreeListener) {
// EnterRule is called when any rule is entered.
func (prc *BaseParserRuleContext) EnterRule(_ ParseTreeListener) {
}
func (prc *BaseParserRuleContext) ExitRule(listener ParseTreeListener) {
// ExitRule is called when any rule is exited.
func (prc *BaseParserRuleContext) ExitRule(_ ParseTreeListener) {
}
// * Does not set parent link other add methods do that///
// * Does not set parent link other add methods do that
func (prc *BaseParserRuleContext) addTerminalNodeChild(child TerminalNode) TerminalNode {
if prc.children == nil {
prc.children = make([]Tree, 0)
@ -120,10 +135,9 @@ func (prc *BaseParserRuleContext) AddChild(child RuleContext) RuleContext {
return child
}
// * Used by EnterOuterAlt to toss out a RuleContext previously added as
// we entered a rule. If we have // label, we will need to remove
// generic ruleContext object.
// /
// RemoveLastChild is used by [EnterOuterAlt] to toss out a [RuleContext] previously added as
// we entered a rule. If we have a label, we will need to remove
// the generic ruleContext object.
func (prc *BaseParserRuleContext) RemoveLastChild() {
if prc.children != nil && len(prc.children) > 0 {
prc.children = prc.children[0 : len(prc.children)-1]
@ -293,7 +307,7 @@ func (prc *BaseParserRuleContext) GetChildCount() int {
return len(prc.children)
}
func (prc *BaseParserRuleContext) GetSourceInterval() *Interval {
func (prc *BaseParserRuleContext) GetSourceInterval() Interval {
if prc.start == nil || prc.stop == nil {
return TreeInvalidInterval
}
@ -340,6 +354,50 @@ func (prc *BaseParserRuleContext) String(ruleNames []string, stop RuleContext) s
return s
}
func (prc *BaseParserRuleContext) SetParent(v Tree) {
if v == nil {
prc.parentCtx = nil
} else {
prc.parentCtx = v.(RuleContext)
}
}
func (prc *BaseParserRuleContext) GetInvokingState() int {
return prc.invokingState
}
func (prc *BaseParserRuleContext) SetInvokingState(t int) {
prc.invokingState = t
}
func (prc *BaseParserRuleContext) GetRuleIndex() int {
return prc.RuleIndex
}
func (prc *BaseParserRuleContext) GetAltNumber() int {
return ATNInvalidAltNumber
}
func (prc *BaseParserRuleContext) SetAltNumber(_ int) {}
// IsEmpty returns true if the context of b is empty.
//
// A context is empty if there is no invoking state, meaning nobody calls
// current context.
func (prc *BaseParserRuleContext) IsEmpty() bool {
return prc.invokingState == -1
}
// GetParent returns the combined text of all child nodes. This method only considers
// tokens which have been added to the parse tree.
//
// Since tokens on hidden channels (e.g. whitespace or comments) are not
// added to the parse trees, they will not appear in the output of this
// method.
func (prc *BaseParserRuleContext) GetParent() Tree {
return prc.parentCtx
}
var ParserRuleContextEmpty = NewBaseParserRuleContext(nil, -1)
type InterpreterRuleContext interface {
@ -350,6 +408,7 @@ type BaseInterpreterRuleContext struct {
*BaseParserRuleContext
}
//goland:noinspection GoUnusedExportedFunction
func NewBaseInterpreterRuleContext(parent BaseInterpreterRuleContext, invokingStateNumber, ruleIndex int) *BaseInterpreterRuleContext {
prc := new(BaseInterpreterRuleContext)

View File

@ -0,0 +1,727 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"fmt"
"golang.org/x/exp/slices"
"strconv"
)
var _emptyPredictionContextHash int
func init() {
_emptyPredictionContextHash = murmurInit(1)
_emptyPredictionContextHash = murmurFinish(_emptyPredictionContextHash, 0)
}
func calculateEmptyHash() int {
return _emptyPredictionContextHash
}
const (
// BasePredictionContextEmptyReturnState represents {@code $} in an array in full context mode, $
// doesn't mean wildcard:
//
// $ + x = [$,x]
//
// Here,
//
// $ = EmptyReturnState
BasePredictionContextEmptyReturnState = 0x7FFFFFFF
)
// TODO: JI These are meant to be atomics - this does not seem to match the Java runtime here
//
//goland:noinspection GoUnusedGlobalVariable
var (
BasePredictionContextglobalNodeCount = 1
BasePredictionContextid = BasePredictionContextglobalNodeCount
)
const (
PredictionContextEmpty = iota
PredictionContextSingleton
PredictionContextArray
)
// PredictionContext is a go idiomatic implementation of PredictionContext that does not rty to
// emulate inheritance from Java, and can be used without an interface definition. An interface
// is not required because no user code will ever need to implement this interface.
type PredictionContext struct {
cachedHash int
pcType int
parentCtx *PredictionContext
returnState int
parents []*PredictionContext
returnStates []int
}
func NewEmptyPredictionContext() *PredictionContext {
nep := &PredictionContext{}
nep.cachedHash = calculateEmptyHash()
nep.pcType = PredictionContextEmpty
nep.returnState = BasePredictionContextEmptyReturnState
return nep
}
func NewBaseSingletonPredictionContext(parent *PredictionContext, returnState int) *PredictionContext {
pc := &PredictionContext{}
pc.pcType = PredictionContextSingleton
pc.returnState = returnState
pc.parentCtx = parent
if parent != nil {
pc.cachedHash = calculateHash(parent, returnState)
} else {
pc.cachedHash = calculateEmptyHash()
}
return pc
}
func SingletonBasePredictionContextCreate(parent *PredictionContext, returnState int) *PredictionContext {
if returnState == BasePredictionContextEmptyReturnState && parent == nil {
// someone can pass in the bits of an array ctx that mean $
return BasePredictionContextEMPTY
}
return NewBaseSingletonPredictionContext(parent, returnState)
}
func NewArrayPredictionContext(parents []*PredictionContext, returnStates []int) *PredictionContext {
// Parent can be nil only if full ctx mode and we make an array
// from {@link //EMPTY} and non-empty. We merge {@link //EMPTY} by using
// nil parent and
// returnState == {@link //EmptyReturnState}.
hash := murmurInit(1)
for _, parent := range parents {
hash = murmurUpdate(hash, parent.Hash())
}
for _, returnState := range returnStates {
hash = murmurUpdate(hash, returnState)
}
hash = murmurFinish(hash, len(parents)<<1)
nec := &PredictionContext{}
nec.cachedHash = hash
nec.pcType = PredictionContextArray
nec.parents = parents
nec.returnStates = returnStates
return nec
}
func (p *PredictionContext) Hash() int {
return p.cachedHash
}
func (p *PredictionContext) Equals(other Collectable[*PredictionContext]) bool {
switch p.pcType {
case PredictionContextEmpty:
otherP := other.(*PredictionContext)
return other == nil || otherP == nil || otherP.isEmpty()
case PredictionContextSingleton:
return p.SingletonEquals(other)
case PredictionContextArray:
return p.ArrayEquals(other)
}
return false
}
func (p *PredictionContext) ArrayEquals(o Collectable[*PredictionContext]) bool {
if o == nil {
return false
}
other := o.(*PredictionContext)
if other == nil || other.pcType != PredictionContextArray {
return false
}
if p.cachedHash != other.Hash() {
return false // can't be same if hash is different
}
// Must compare the actual array elements and not just the array address
//
return slices.Equal(p.returnStates, other.returnStates) &&
slices.EqualFunc(p.parents, other.parents, func(x, y *PredictionContext) bool {
return x.Equals(y)
})
}
func (p *PredictionContext) SingletonEquals(other Collectable[*PredictionContext]) bool {
if other == nil {
return false
}
otherP := other.(*PredictionContext)
if otherP == nil {
return false
}
if p.cachedHash != otherP.Hash() {
return false // Can't be same if hash is different
}
if p.returnState != otherP.getReturnState(0) {
return false
}
// Both parents must be nil if one is
if p.parentCtx == nil {
return otherP.parentCtx == nil
}
return p.parentCtx.Equals(otherP.parentCtx)
}
func (p *PredictionContext) GetParent(i int) *PredictionContext {
switch p.pcType {
case PredictionContextEmpty:
return nil
case PredictionContextSingleton:
return p.parentCtx
case PredictionContextArray:
return p.parents[i]
}
return nil
}
func (p *PredictionContext) getReturnState(i int) int {
switch p.pcType {
case PredictionContextArray:
return p.returnStates[i]
default:
return p.returnState
}
}
func (p *PredictionContext) GetReturnStates() []int {
switch p.pcType {
case PredictionContextArray:
return p.returnStates
default:
return []int{p.returnState}
}
}
func (p *PredictionContext) length() int {
switch p.pcType {
case PredictionContextArray:
return len(p.returnStates)
default:
return 1
}
}
func (p *PredictionContext) hasEmptyPath() bool {
switch p.pcType {
case PredictionContextSingleton:
return p.returnState == BasePredictionContextEmptyReturnState
}
return p.getReturnState(p.length()-1) == BasePredictionContextEmptyReturnState
}
func (p *PredictionContext) String() string {
switch p.pcType {
case PredictionContextEmpty:
return "$"
case PredictionContextSingleton:
var up string
if p.parentCtx == nil {
up = ""
} else {
up = p.parentCtx.String()
}
if len(up) == 0 {
if p.returnState == BasePredictionContextEmptyReturnState {
return "$"
}
return strconv.Itoa(p.returnState)
}
return strconv.Itoa(p.returnState) + " " + up
case PredictionContextArray:
if p.isEmpty() {
return "[]"
}
s := "["
for i := 0; i < len(p.returnStates); i++ {
if i > 0 {
s = s + ", "
}
if p.returnStates[i] == BasePredictionContextEmptyReturnState {
s = s + "$"
continue
}
s = s + strconv.Itoa(p.returnStates[i])
if !p.parents[i].isEmpty() {
s = s + " " + p.parents[i].String()
} else {
s = s + "nil"
}
}
return s + "]"
default:
return "unknown"
}
}
func (p *PredictionContext) isEmpty() bool {
switch p.pcType {
case PredictionContextEmpty:
return true
case PredictionContextArray:
// since EmptyReturnState can only appear in the last position, we
// don't need to verify that size==1
return p.returnStates[0] == BasePredictionContextEmptyReturnState
default:
return false
}
}
func (p *PredictionContext) Type() int {
return p.pcType
}
func calculateHash(parent *PredictionContext, returnState int) int {
h := murmurInit(1)
h = murmurUpdate(h, parent.Hash())
h = murmurUpdate(h, returnState)
return murmurFinish(h, 2)
}
// Convert a {@link RuleContext} tree to a {@link BasePredictionContext} graph.
// Return {@link //EMPTY} if {@code outerContext} is empty or nil.
// /
func predictionContextFromRuleContext(a *ATN, outerContext RuleContext) *PredictionContext {
if outerContext == nil {
outerContext = ParserRuleContextEmpty
}
// if we are in RuleContext of start rule, s, then BasePredictionContext
// is EMPTY. Nobody called us. (if we are empty, return empty)
if outerContext.GetParent() == nil || outerContext == ParserRuleContextEmpty {
return BasePredictionContextEMPTY
}
// If we have a parent, convert it to a BasePredictionContext graph
parent := predictionContextFromRuleContext(a, outerContext.GetParent().(RuleContext))
state := a.states[outerContext.GetInvokingState()]
transition := state.GetTransitions()[0]
return SingletonBasePredictionContextCreate(parent, transition.(*RuleTransition).followState.GetStateNumber())
}
func merge(a, b *PredictionContext, rootIsWildcard bool, mergeCache *JPCMap) *PredictionContext {
// Share same graph if both same
//
if a == b || a.Equals(b) {
return a
}
if a.pcType == PredictionContextSingleton && b.pcType == PredictionContextSingleton {
return mergeSingletons(a, b, rootIsWildcard, mergeCache)
}
// At least one of a or b is array
// If one is $ and rootIsWildcard, return $ as wildcard
if rootIsWildcard {
if a.isEmpty() {
return a
}
if b.isEmpty() {
return b
}
}
// Convert either Singleton or Empty to arrays, so that we can merge them
//
ara := convertToArray(a)
arb := convertToArray(b)
return mergeArrays(ara, arb, rootIsWildcard, mergeCache)
}
func convertToArray(pc *PredictionContext) *PredictionContext {
switch pc.Type() {
case PredictionContextEmpty:
return NewArrayPredictionContext([]*PredictionContext{}, []int{})
case PredictionContextSingleton:
return NewArrayPredictionContext([]*PredictionContext{pc.GetParent(0)}, []int{pc.getReturnState(0)})
default:
// Already an array
}
return pc
}
// mergeSingletons merges two Singleton [PredictionContext] instances.
//
// Stack tops equal, parents merge is same return left graph.
// <embed src="images/SingletonMerge_SameRootSamePar.svg"
// type="image/svg+xml"/></p>
//
// <p>Same stack top, parents differ merge parents giving array node, then
// remainders of those graphs. A new root node is created to point to the
// merged parents.<br>
// <embed src="images/SingletonMerge_SameRootDiffPar.svg"
// type="image/svg+xml"/></p>
//
// <p>Different stack tops pointing to same parent. Make array node for the
// root where both element in the root point to the same (original)
// parent.<br>
// <embed src="images/SingletonMerge_DiffRootSamePar.svg"
// type="image/svg+xml"/></p>
//
// <p>Different stack tops pointing to different parents. Make array node for
// the root where each element points to the corresponding original
// parent.<br>
// <embed src="images/SingletonMerge_DiffRootDiffPar.svg"
// type="image/svg+xml"/></p>
//
// @param a the first {@link SingletonBasePredictionContext}
// @param b the second {@link SingletonBasePredictionContext}
// @param rootIsWildcard {@code true} if this is a local-context merge,
// otherwise false to indicate a full-context merge
// @param mergeCache
// /
func mergeSingletons(a, b *PredictionContext, rootIsWildcard bool, mergeCache *JPCMap) *PredictionContext {
if mergeCache != nil {
previous, present := mergeCache.Get(a, b)
if present {
return previous
}
previous, present = mergeCache.Get(b, a)
if present {
return previous
}
}
rootMerge := mergeRoot(a, b, rootIsWildcard)
if rootMerge != nil {
if mergeCache != nil {
mergeCache.Put(a, b, rootMerge)
}
return rootMerge
}
if a.returnState == b.returnState {
parent := merge(a.parentCtx, b.parentCtx, rootIsWildcard, mergeCache)
// if parent is same as existing a or b parent or reduced to a parent,
// return it
if parent.Equals(a.parentCtx) {
return a // ax + bx = ax, if a=b
}
if parent.Equals(b.parentCtx) {
return b // ax + bx = bx, if a=b
}
// else: ax + ay = a'[x,y]
// merge parents x and y, giving array node with x,y then remainders
// of those graphs. dup a, a' points at merged array.
// New joined parent so create a new singleton pointing to it, a'
spc := SingletonBasePredictionContextCreate(parent, a.returnState)
if mergeCache != nil {
mergeCache.Put(a, b, spc)
}
return spc
}
// a != b payloads differ
// see if we can collapse parents due to $+x parents if local ctx
var singleParent *PredictionContext
if a.Equals(b) || (a.parentCtx != nil && a.parentCtx.Equals(b.parentCtx)) { // ax +
// bx =
// [a,b]x
singleParent = a.parentCtx
}
if singleParent != nil { // parents are same
// sort payloads and use same parent
payloads := []int{a.returnState, b.returnState}
if a.returnState > b.returnState {
payloads[0] = b.returnState
payloads[1] = a.returnState
}
parents := []*PredictionContext{singleParent, singleParent}
apc := NewArrayPredictionContext(parents, payloads)
if mergeCache != nil {
mergeCache.Put(a, b, apc)
}
return apc
}
// parents differ and can't merge them. Just pack together
// into array can't merge.
// ax + by = [ax,by]
payloads := []int{a.returnState, b.returnState}
parents := []*PredictionContext{a.parentCtx, b.parentCtx}
if a.returnState > b.returnState { // sort by payload
payloads[0] = b.returnState
payloads[1] = a.returnState
parents = []*PredictionContext{b.parentCtx, a.parentCtx}
}
apc := NewArrayPredictionContext(parents, payloads)
if mergeCache != nil {
mergeCache.Put(a, b, apc)
}
return apc
}
// Handle case where at least one of {@code a} or {@code b} is
// {@link //EMPTY}. In the following diagrams, the symbol {@code $} is used
// to represent {@link //EMPTY}.
//
// <h2>Local-Context Merges</h2>
//
// <p>These local-context merge operations are used when {@code rootIsWildcard}
// is true.</p>
//
// <p>{@link //EMPTY} is superset of any graph return {@link //EMPTY}.<br>
// <embed src="images/LocalMerge_EmptyRoot.svg" type="image/svg+xml"/></p>
//
// <p>{@link //EMPTY} and anything is {@code //EMPTY}, so merged parent is
// {@code //EMPTY} return left graph.<br>
// <embed src="images/LocalMerge_EmptyParent.svg" type="image/svg+xml"/></p>
//
// <p>Special case of last merge if local context.<br>
// <embed src="images/LocalMerge_DiffRoots.svg" type="image/svg+xml"/></p>
//
// <h2>Full-Context Merges</h2>
//
// <p>These full-context merge operations are used when {@code rootIsWildcard}
// is false.</p>
//
// <p><embed src="images/FullMerge_EmptyRoots.svg" type="image/svg+xml"/></p>
//
// <p>Must keep all contexts {@link //EMPTY} in array is a special value (and
// nil parent).<br>
// <embed src="images/FullMerge_EmptyRoot.svg" type="image/svg+xml"/></p>
//
// <p><embed src="images/FullMerge_SameRoot.svg" type="image/svg+xml"/></p>
//
// @param a the first {@link SingletonBasePredictionContext}
// @param b the second {@link SingletonBasePredictionContext}
// @param rootIsWildcard {@code true} if this is a local-context merge,
// otherwise false to indicate a full-context merge
// /
func mergeRoot(a, b *PredictionContext, rootIsWildcard bool) *PredictionContext {
if rootIsWildcard {
if a.pcType == PredictionContextEmpty {
return BasePredictionContextEMPTY // // + b =//
}
if b.pcType == PredictionContextEmpty {
return BasePredictionContextEMPTY // a +// =//
}
} else {
if a.isEmpty() && b.isEmpty() {
return BasePredictionContextEMPTY // $ + $ = $
} else if a.isEmpty() { // $ + x = [$,x]
payloads := []int{b.getReturnState(-1), BasePredictionContextEmptyReturnState}
parents := []*PredictionContext{b.GetParent(-1), nil}
return NewArrayPredictionContext(parents, payloads)
} else if b.isEmpty() { // x + $ = [$,x] ($ is always first if present)
payloads := []int{a.getReturnState(-1), BasePredictionContextEmptyReturnState}
parents := []*PredictionContext{a.GetParent(-1), nil}
return NewArrayPredictionContext(parents, payloads)
}
}
return nil
}
// Merge two {@link ArrayBasePredictionContext} instances.
//
// <p>Different tops, different parents.<br>
// <embed src="images/ArrayMerge_DiffTopDiffPar.svg" type="image/svg+xml"/></p>
//
// <p>Shared top, same parents.<br>
// <embed src="images/ArrayMerge_ShareTopSamePar.svg" type="image/svg+xml"/></p>
//
// <p>Shared top, different parents.<br>
// <embed src="images/ArrayMerge_ShareTopDiffPar.svg" type="image/svg+xml"/></p>
//
// <p>Shared top, all shared parents.<br>
// <embed src="images/ArrayMerge_ShareTopSharePar.svg"
// type="image/svg+xml"/></p>
//
// <p>Equal tops, merge parents and reduce top to
// {@link SingletonBasePredictionContext}.<br>
// <embed src="images/ArrayMerge_EqualTop.svg" type="image/svg+xml"/></p>
//
//goland:noinspection GoBoolExpressions
func mergeArrays(a, b *PredictionContext, rootIsWildcard bool, mergeCache *JPCMap) *PredictionContext {
if mergeCache != nil {
previous, present := mergeCache.Get(a, b)
if present {
if runtimeConfig.parserATNSimulatorTraceATNSim {
fmt.Println("mergeArrays a=" + a.String() + ",b=" + b.String() + " -> previous")
}
return previous
}
previous, present = mergeCache.Get(b, a)
if present {
if runtimeConfig.parserATNSimulatorTraceATNSim {
fmt.Println("mergeArrays a=" + a.String() + ",b=" + b.String() + " -> previous")
}
return previous
}
}
// merge sorted payloads a + b => M
i := 0 // walks a
j := 0 // walks b
k := 0 // walks target M array
mergedReturnStates := make([]int, len(a.returnStates)+len(b.returnStates))
mergedParents := make([]*PredictionContext, len(a.returnStates)+len(b.returnStates))
// walk and merge to yield mergedParents, mergedReturnStates
for i < len(a.returnStates) && j < len(b.returnStates) {
aParent := a.parents[i]
bParent := b.parents[j]
if a.returnStates[i] == b.returnStates[j] {
// same payload (stack tops are equal), must yield merged singleton
payload := a.returnStates[i]
// $+$ = $
bothDollars := payload == BasePredictionContextEmptyReturnState && aParent == nil && bParent == nil
axAX := aParent != nil && bParent != nil && aParent.Equals(bParent) // ax+ax
// ->
// ax
if bothDollars || axAX {
mergedParents[k] = aParent // choose left
mergedReturnStates[k] = payload
} else { // ax+ay -> a'[x,y]
mergedParent := merge(aParent, bParent, rootIsWildcard, mergeCache)
mergedParents[k] = mergedParent
mergedReturnStates[k] = payload
}
i++ // hop over left one as usual
j++ // but also Skip one in right side since we merge
} else if a.returnStates[i] < b.returnStates[j] { // copy a[i] to M
mergedParents[k] = aParent
mergedReturnStates[k] = a.returnStates[i]
i++
} else { // b > a, copy b[j] to M
mergedParents[k] = bParent
mergedReturnStates[k] = b.returnStates[j]
j++
}
k++
}
// copy over any payloads remaining in either array
if i < len(a.returnStates) {
for p := i; p < len(a.returnStates); p++ {
mergedParents[k] = a.parents[p]
mergedReturnStates[k] = a.returnStates[p]
k++
}
} else {
for p := j; p < len(b.returnStates); p++ {
mergedParents[k] = b.parents[p]
mergedReturnStates[k] = b.returnStates[p]
k++
}
}
// trim merged if we combined a few that had same stack tops
if k < len(mergedParents) { // write index < last position trim
if k == 1 { // for just one merged element, return singleton top
pc := SingletonBasePredictionContextCreate(mergedParents[0], mergedReturnStates[0])
if mergeCache != nil {
mergeCache.Put(a, b, pc)
}
return pc
}
mergedParents = mergedParents[0:k]
mergedReturnStates = mergedReturnStates[0:k]
}
M := NewArrayPredictionContext(mergedParents, mergedReturnStates)
// if we created same array as a or b, return that instead
// TODO: JI track whether this is possible above during merge sort for speed and possibly avoid an allocation
if M.Equals(a) {
if mergeCache != nil {
mergeCache.Put(a, b, a)
}
if runtimeConfig.parserATNSimulatorTraceATNSim {
fmt.Println("mergeArrays a=" + a.String() + ",b=" + b.String() + " -> a")
}
return a
}
if M.Equals(b) {
if mergeCache != nil {
mergeCache.Put(a, b, b)
}
if runtimeConfig.parserATNSimulatorTraceATNSim {
fmt.Println("mergeArrays a=" + a.String() + ",b=" + b.String() + " -> b")
}
return b
}
combineCommonParents(&mergedParents)
if mergeCache != nil {
mergeCache.Put(a, b, M)
}
if runtimeConfig.parserATNSimulatorTraceATNSim {
fmt.Println("mergeArrays a=" + a.String() + ",b=" + b.String() + " -> " + M.String())
}
return M
}
// Make pass over all M parents and merge any Equals() ones.
// Note that we pass a pointer to the slice as we want to modify it in place.
//
//goland:noinspection GoUnusedFunction
func combineCommonParents(parents *[]*PredictionContext) {
uniqueParents := NewJStore[*PredictionContext, Comparator[*PredictionContext]](pContextEqInst, PredictionContextCollection, "combineCommonParents for PredictionContext")
for p := 0; p < len(*parents); p++ {
parent := (*parents)[p]
_, _ = uniqueParents.Put(parent)
}
for q := 0; q < len(*parents); q++ {
pc, _ := uniqueParents.Get((*parents)[q])
(*parents)[q] = pc
}
}
func getCachedBasePredictionContext(context *PredictionContext, contextCache *PredictionContextCache, visited *VisitRecord) *PredictionContext {
if context.isEmpty() {
return context
}
existing, present := visited.Get(context)
if present {
return existing
}
existing, present = contextCache.Get(context)
if present {
visited.Put(context, existing)
return existing
}
changed := false
parents := make([]*PredictionContext, context.length())
for i := 0; i < len(parents); i++ {
parent := getCachedBasePredictionContext(context.GetParent(i), contextCache, visited)
if changed || !parent.Equals(context.GetParent(i)) {
if !changed {
parents = make([]*PredictionContext, context.length())
for j := 0; j < context.length(); j++ {
parents[j] = context.GetParent(j)
}
changed = true
}
parents[i] = parent
}
}
if !changed {
contextCache.add(context)
visited.Put(context, context)
return context
}
var updated *PredictionContext
if len(parents) == 0 {
updated = BasePredictionContextEMPTY
} else if len(parents) == 1 {
updated = SingletonBasePredictionContextCreate(parents[0], context.getReturnState(0))
} else {
updated = NewArrayPredictionContext(parents, context.GetReturnStates())
}
contextCache.add(updated)
visited.Put(updated, updated)
visited.Put(context, updated)
return updated
}

View File

@ -0,0 +1,48 @@
package antlr
var BasePredictionContextEMPTY = &PredictionContext{
cachedHash: calculateEmptyHash(),
pcType: PredictionContextEmpty,
returnState: BasePredictionContextEmptyReturnState,
}
// PredictionContextCache is Used to cache [PredictionContext] objects. It is used for the shared
// context cash associated with contexts in DFA states. This cache
// can be used for both lexers and parsers.
type PredictionContextCache struct {
cache *JMap[*PredictionContext, *PredictionContext, Comparator[*PredictionContext]]
}
func NewPredictionContextCache() *PredictionContextCache {
return &PredictionContextCache{
cache: NewJMap[*PredictionContext, *PredictionContext, Comparator[*PredictionContext]](pContextEqInst, PredictionContextCacheCollection, "NewPredictionContextCache()"),
}
}
// Add a context to the cache and return it. If the context already exists,
// return that one instead and do not add a new context to the cache.
// Protect shared cache from unsafe thread access.
func (p *PredictionContextCache) add(ctx *PredictionContext) *PredictionContext {
if ctx.isEmpty() {
return BasePredictionContextEMPTY
}
// Put will return the existing entry if it is present (note this is done via Equals, not whether it is
// the same pointer), otherwise it will add the new entry and return that.
//
existing, present := p.cache.Get(ctx)
if present {
return existing
}
p.cache.Put(ctx, ctx)
return ctx
}
func (p *PredictionContextCache) Get(ctx *PredictionContext) (*PredictionContext, bool) {
pc, exists := p.cache.Get(ctx)
return pc, exists
}
func (p *PredictionContextCache) length() int {
return p.cache.Len()
}

536
vendor/github.com/antlr4-go/antlr/v4/prediction_mode.go generated vendored Normal file
View File

@ -0,0 +1,536 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
// This enumeration defines the prediction modes available in ANTLR 4 along with
// utility methods for analyzing configuration sets for conflicts and/or
// ambiguities.
const (
// PredictionModeSLL represents the SLL(*) prediction mode.
// This prediction mode ignores the current
// parser context when making predictions. This is the fastest prediction
// mode, and provides correct results for many grammars. This prediction
// mode is more powerful than the prediction mode provided by ANTLR 3, but
// may result in syntax errors for grammar and input combinations which are
// not SLL.
//
// When using this prediction mode, the parser will either return a correct
// parse tree (i.e. the same parse tree that would be returned with the
// [PredictionModeLL] prediction mode), or it will Report a syntax error. If a
// syntax error is encountered when using the SLL prediction mode,
// it may be due to either an actual syntax error in the input or indicate
// that the particular combination of grammar and input requires the more
// powerful LL prediction abilities to complete successfully.
//
// This prediction mode does not provide any guarantees for prediction
// behavior for syntactically-incorrect inputs.
//
PredictionModeSLL = 0
// PredictionModeLL represents the LL(*) prediction mode.
// This prediction mode allows the current parser
// context to be used for resolving SLL conflicts that occur during
// prediction. This is the fastest prediction mode that guarantees correct
// parse results for all combinations of grammars with syntactically correct
// inputs.
//
// When using this prediction mode, the parser will make correct decisions
// for all syntactically-correct grammar and input combinations. However, in
// cases where the grammar is truly ambiguous this prediction mode might not
// report a precise answer for exactly which alternatives are
// ambiguous.
//
// This prediction mode does not provide any guarantees for prediction
// behavior for syntactically-incorrect inputs.
//
PredictionModeLL = 1
// PredictionModeLLExactAmbigDetection represents the LL(*) prediction mode
// with exact ambiguity detection.
//
// In addition to the correctness guarantees provided by the [PredictionModeLL] prediction mode,
// this prediction mode instructs the prediction algorithm to determine the
// complete and exact set of ambiguous alternatives for every ambiguous
// decision encountered while parsing.
//
// This prediction mode may be used for diagnosing ambiguities during
// grammar development. Due to the performance overhead of calculating sets
// of ambiguous alternatives, this prediction mode should be avoided when
// the exact results are not necessary.
//
// This prediction mode does not provide any guarantees for prediction
// behavior for syntactically-incorrect inputs.
//
PredictionModeLLExactAmbigDetection = 2
)
// PredictionModehasSLLConflictTerminatingPrediction computes the SLL prediction termination condition.
//
// This method computes the SLL prediction termination condition for both of
// the following cases:
//
// - The usual SLL+LL fallback upon SLL conflict
// - Pure SLL without LL fallback
//
// # Combined SLL+LL Parsing
//
// When LL-fallback is enabled upon SLL conflict, correct predictions are
// ensured regardless of how the termination condition is computed by this
// method. Due to the substantially higher cost of LL prediction, the
// prediction should only fall back to LL when the additional lookahead
// cannot lead to a unique SLL prediction.
//
// Assuming combined SLL+LL parsing, an SLL configuration set with only
// conflicting subsets should fall back to full LL, even if the
// configuration sets don't resolve to the same alternative, e.g.
//
// {1,2} and {3,4}
//
// If there is at least one non-conflicting
// configuration, SLL could continue with the hopes that more lookahead will
// resolve via one of those non-conflicting configurations.
//
// Here's the prediction termination rule them: SLL (for SLL+LL parsing)
// stops when it sees only conflicting configuration subsets. In contrast,
// full LL keeps going when there is uncertainty.
//
// # Heuristic
//
// As a heuristic, we stop prediction when we see any conflicting subset
// unless we see a state that only has one alternative associated with it.
// The single-alt-state thing lets prediction continue upon rules like
// (otherwise, it would admit defeat too soon):
//
// [12|1|[], 6|2|[], 12|2|[]]. s : (ID | ID ID?) ;
//
// When the [ATN] simulation reaches the state before ';', it has a
// [DFA] state that looks like:
//
// [12|1|[], 6|2|[], 12|2|[]]
//
// Naturally
//
// 12|1|[] and 12|2|[]
//
// conflict, but we cannot stop processing this node because alternative to has another way to continue,
// via
//
// [6|2|[]]
//
// It also let's us continue for this rule:
//
// [1|1|[], 1|2|[], 8|3|[]] a : A | A | A B ;
//
// After Matching input A, we reach the stop state for rule A, state 1.
// State 8 is the state immediately before B. Clearly alternatives 1 and 2
// conflict and no amount of further lookahead will separate the two.
// However, alternative 3 will be able to continue, and so we do not stop
// working on this state. In the previous example, we're concerned with
// states associated with the conflicting alternatives. Here alt 3 is not
// associated with the conflicting configs, but since we can continue
// looking for input reasonably, don't declare the state done.
//
// # Pure SLL Parsing
//
// To handle pure SLL parsing, all we have to do is make sure that we
// combine stack contexts for configurations that differ only by semantic
// predicate. From there, we can do the usual SLL termination heuristic.
//
// # Predicates in SLL+LL Parsing
//
// SLL decisions don't evaluate predicates until after they reach [DFA] stop
// states because they need to create the [DFA] cache that works in all
// semantic situations. In contrast, full LL evaluates predicates collected
// during start state computation, so it can ignore predicates thereafter.
// This means that SLL termination detection can totally ignore semantic
// predicates.
//
// Implementation-wise, [ATNConfigSet] combines stack contexts but not
// semantic predicate contexts, so we might see two configurations like the
// following:
//
// (s, 1, x, {}), (s, 1, x', {p})
//
// Before testing these configurations against others, we have to merge
// x and x' (without modifying the existing configurations).
// For example, we test (x+x')==x” when looking for conflicts in
// the following configurations:
//
// (s, 1, x, {}), (s, 1, x', {p}), (s, 2, x”, {})
//
// If the configuration set has predicates (as indicated by
// [ATNConfigSet.hasSemanticContext]), this algorithm makes a copy of
// the configurations to strip out all the predicates so that a standard
// [ATNConfigSet] will merge everything ignoring predicates.
func PredictionModehasSLLConflictTerminatingPrediction(mode int, configs *ATNConfigSet) bool {
// Configs in rule stop states indicate reaching the end of the decision
// rule (local context) or end of start rule (full context). If all
// configs meet this condition, then none of the configurations is able
// to Match additional input, so we terminate prediction.
//
if PredictionModeallConfigsInRuleStopStates(configs) {
return true
}
// pure SLL mode parsing
if mode == PredictionModeSLL {
// Don't bother with combining configs from different semantic
// contexts if we can fail over to full LL costs more time
// since we'll often fail over anyway.
if configs.hasSemanticContext {
// dup configs, tossing out semantic predicates
dup := NewATNConfigSet(false)
for _, c := range configs.configs {
// NewATNConfig({semanticContext:}, c)
c = NewATNConfig2(c, SemanticContextNone)
dup.Add(c, nil)
}
configs = dup
}
// now we have combined contexts for configs with dissimilar predicates
}
// pure SLL or combined SLL+LL mode parsing
altsets := PredictionModegetConflictingAltSubsets(configs)
return PredictionModehasConflictingAltSet(altsets) && !PredictionModehasStateAssociatedWithOneAlt(configs)
}
// PredictionModehasConfigInRuleStopState checks if any configuration in the given configs is in a
// [RuleStopState]. Configurations meeting this condition have reached
// the end of the decision rule (local context) or end of start rule (full
// context).
//
// The func returns true if any configuration in the supplied configs is in a [RuleStopState]
func PredictionModehasConfigInRuleStopState(configs *ATNConfigSet) bool {
for _, c := range configs.configs {
if _, ok := c.GetState().(*RuleStopState); ok {
return true
}
}
return false
}
// PredictionModeallConfigsInRuleStopStates checks if all configurations in configs are in a
// [RuleStopState]. Configurations meeting this condition have reached
// the end of the decision rule (local context) or end of start rule (full
// context).
//
// the func returns true if all configurations in configs are in a
// [RuleStopState]
func PredictionModeallConfigsInRuleStopStates(configs *ATNConfigSet) bool {
for _, c := range configs.configs {
if _, ok := c.GetState().(*RuleStopState); !ok {
return false
}
}
return true
}
// PredictionModeresolvesToJustOneViableAlt checks full LL prediction termination.
//
// Can we stop looking ahead during [ATN] simulation or is there some
// uncertainty as to which alternative we will ultimately pick, after
// consuming more input? Even if there are partial conflicts, we might know
// that everything is going to resolve to the same minimum alternative. That
// means we can stop since no more lookahead will change that fact. On the
// other hand, there might be multiple conflicts that resolve to different
// minimums. That means we need more look ahead to decide which of those
// alternatives we should predict.
//
// The basic idea is to split the set of configurations 'C', into
// conflicting subsets (s, _, ctx, _) and singleton subsets with
// non-conflicting configurations. Two configurations conflict if they have
// identical [ATNConfig].state and [ATNConfig].context values
// but a different [ATNConfig].alt value, e.g.
//
// (s, i, ctx, _)
//
// and
//
// (s, j, ctx, _) ; for i != j
//
// Reduce these configuration subsets to the set of possible alternatives.
// You can compute the alternative subsets in one pass as follows:
//
// A_s,ctx = {i | (s, i, ctx, _)}
//
// for each configuration in C holding s and ctx fixed.
//
// Or in pseudo-code:
//
// for each configuration c in C:
// map[c] U = c.ATNConfig.alt alt // map hash/equals uses s and x, not alt and not pred
//
// The values in map are the set of
//
// A_s,ctx
//
// sets.
//
// If
//
// |A_s,ctx| = 1
//
// then there is no conflict associated with s and ctx.
//
// Reduce the subsets to singletons by choosing a minimum of each subset. If
// the union of these alternative subsets is a singleton, then no amount of
// further lookahead will help us. We will always pick that alternative. If,
// however, there is more than one alternative, then we are uncertain which
// alternative to predict and must continue looking for resolution. We may
// or may not discover an ambiguity in the future, even if there are no
// conflicting subsets this round.
//
// The biggest sin is to terminate early because it means we've made a
// decision but were uncertain as to the eventual outcome. We haven't used
// enough lookahead. On the other hand, announcing a conflict too late is no
// big deal; you will still have the conflict. It's just inefficient. It
// might even look until the end of file.
//
// No special consideration for semantic predicates is required because
// predicates are evaluated on-the-fly for full LL prediction, ensuring that
// no configuration contains a semantic context during the termination
// check.
//
// # Conflicting Configs
//
// Two configurations:
//
// (s, i, x) and (s, j, x')
//
// conflict when i != j but x = x'. Because we merge all
// (s, i, _) configurations together, that means that there are at
// most n configurations associated with state s for
// n possible alternatives in the decision. The merged stacks
// complicate the comparison of configuration contexts x and x'.
//
// Sam checks to see if one is a subset of the other by calling
// merge and checking to see if the merged result is either x or x'.
// If the x associated with lowest alternative i
// is the superset, then i is the only possible prediction since the
// others resolve to min(i) as well. However, if x is
// associated with j > i then at least one stack configuration for
// j is not in conflict with alternative i. The algorithm
// should keep going, looking for more lookahead due to the uncertainty.
//
// For simplicity, I'm doing an equality check between x and
// x', which lets the algorithm continue to consume lookahead longer
// than necessary. The reason I like the equality is of course the
// simplicity but also because that is the test you need to detect the
// alternatives that are actually in conflict.
//
// # Continue/Stop Rule
//
// Continue if the union of resolved alternative sets from non-conflicting and
// conflicting alternative subsets has more than one alternative. We are
// uncertain about which alternative to predict.
//
// The complete set of alternatives,
//
// [i for (_, i, _)]
//
// tells us which alternatives are still in the running for the amount of input we've
// consumed at this point. The conflicting sets let us to strip away
// configurations that won't lead to more states because we resolve
// conflicts to the configuration with a minimum alternate for the
// conflicting set.
//
// Cases
//
// - no conflicts and more than 1 alternative in set => continue
// - (s, 1, x), (s, 2, x), (s, 3, z), (s', 1, y), (s', 2, y) yields non-conflicting set
// {3} conflicting sets min({1,2}) min({1,2}) = {1,3} => continue
// - (s, 1, x), (s, 2, x), (s', 1, y), (s', 2, y), (s”, 1, z) yields non-conflicting set
// {1} conflicting sets min({1,2}) min({1,2}) = {1} => stop and predict 1
// - (s, 1, x), (s, 2, x), (s', 1, y), (s', 2, y) yields conflicting, reduced sets
// {1} {1} = {1} => stop and predict 1, can announce ambiguity {1,2}
// - (s, 1, x), (s, 2, x), (s', 2, y), (s', 3, y) yields conflicting, reduced sets
// {1} {2} = {1,2} => continue
// - (s, 1, x), (s, 2, x), (s', 2, y), (s', 3, y) yields conflicting, reduced sets
// {1} {2} = {1,2} => continue
// - (s, 1, x), (s, 2, x), (s', 3, y), (s', 4, y) yields conflicting, reduced sets
// {1} {3} = {1,3} => continue
//
// # Exact Ambiguity Detection
//
// If all states report the same conflicting set of alternatives, then we
// know we have the exact ambiguity set:
//
// |A_i| > 1
//
// and
//
// A_i = A_j ; for all i, j
//
// In other words, we continue examining lookahead until all A_i
// have more than one alternative and all A_i are the same. If
//
// A={{1,2}, {1,3}}
//
// then regular LL prediction would terminate because the resolved set is {1}.
// To determine what the real ambiguity is, we have to know whether the ambiguity is between one and
// two or one and three so we keep going. We can only stop prediction when
// we need exact ambiguity detection when the sets look like:
//
// A={{1,2}}
//
// or
//
// {{1,2},{1,2}}, etc...
func PredictionModeresolvesToJustOneViableAlt(altsets []*BitSet) int {
return PredictionModegetSingleViableAlt(altsets)
}
// PredictionModeallSubsetsConflict determines if every alternative subset in altsets contains more
// than one alternative.
//
// The func returns true if every [BitSet] in altsets has
// [BitSet].cardinality cardinality > 1
func PredictionModeallSubsetsConflict(altsets []*BitSet) bool {
return !PredictionModehasNonConflictingAltSet(altsets)
}
// PredictionModehasNonConflictingAltSet determines if any single alternative subset in altsets contains
// exactly one alternative.
//
// The func returns true if altsets contains at least one [BitSet] with
// [BitSet].cardinality cardinality 1
func PredictionModehasNonConflictingAltSet(altsets []*BitSet) bool {
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
if alts.length() == 1 {
return true
}
}
return false
}
// PredictionModehasConflictingAltSet determines if any single alternative subset in altsets contains
// more than one alternative.
//
// The func returns true if altsets contains a [BitSet] with
// [BitSet].cardinality cardinality > 1, otherwise false
func PredictionModehasConflictingAltSet(altsets []*BitSet) bool {
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
if alts.length() > 1 {
return true
}
}
return false
}
// PredictionModeallSubsetsEqual determines if every alternative subset in altsets is equivalent.
//
// The func returns true if every member of altsets is equal to the others.
func PredictionModeallSubsetsEqual(altsets []*BitSet) bool {
var first *BitSet
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
if first == nil {
first = alts
} else if alts != first {
return false
}
}
return true
}
// PredictionModegetUniqueAlt returns the unique alternative predicted by all alternative subsets in
// altsets. If no such alternative exists, this method returns
// [ATNInvalidAltNumber].
//
// @param altsets a collection of alternative subsets
func PredictionModegetUniqueAlt(altsets []*BitSet) int {
all := PredictionModeGetAlts(altsets)
if all.length() == 1 {
return all.minValue()
}
return ATNInvalidAltNumber
}
// PredictionModeGetAlts returns the complete set of represented alternatives for a collection of
// alternative subsets. This method returns the union of each [BitSet]
// in altsets, being the set of represented alternatives in altsets.
func PredictionModeGetAlts(altsets []*BitSet) *BitSet {
all := NewBitSet()
for _, alts := range altsets {
all.or(alts)
}
return all
}
// PredictionModegetConflictingAltSubsets gets the conflicting alt subsets from a configuration set.
//
// for each configuration c in configs:
// map[c] U= c.ATNConfig.alt // map hash/equals uses s and x, not alt and not pred
func PredictionModegetConflictingAltSubsets(configs *ATNConfigSet) []*BitSet {
configToAlts := NewJMap[*ATNConfig, *BitSet, *ATNAltConfigComparator[*ATNConfig]](atnAltCfgEqInst, AltSetCollection, "PredictionModegetConflictingAltSubsets()")
for _, c := range configs.configs {
alts, ok := configToAlts.Get(c)
if !ok {
alts = NewBitSet()
configToAlts.Put(c, alts)
}
alts.add(c.GetAlt())
}
return configToAlts.Values()
}
// PredictionModeGetStateToAltMap gets a map from state to alt subset from a configuration set.
//
// for each configuration c in configs:
// map[c.ATNConfig.state] U= c.ATNConfig.alt}
func PredictionModeGetStateToAltMap(configs *ATNConfigSet) *AltDict {
m := NewAltDict()
for _, c := range configs.configs {
alts := m.Get(c.GetState().String())
if alts == nil {
alts = NewBitSet()
m.put(c.GetState().String(), alts)
}
alts.(*BitSet).add(c.GetAlt())
}
return m
}
func PredictionModehasStateAssociatedWithOneAlt(configs *ATNConfigSet) bool {
values := PredictionModeGetStateToAltMap(configs).values()
for i := 0; i < len(values); i++ {
if values[i].(*BitSet).length() == 1 {
return true
}
}
return false
}
// PredictionModegetSingleViableAlt gets the single alternative predicted by all alternative subsets in altsets
// if there is one.
//
// TODO: JI - Review this code - it does not seem to do the same thing as the Java code - maybe because [BitSet] is not like the Java utils BitSet
func PredictionModegetSingleViableAlt(altsets []*BitSet) int {
result := ATNInvalidAltNumber
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
minAlt := alts.minValue()
if result == ATNInvalidAltNumber {
result = minAlt
} else if result != minAlt { // more than 1 viable alt
return ATNInvalidAltNumber
}
}
return result
}

View File

@ -26,6 +26,9 @@ type Recognizer interface {
RemoveErrorListeners()
GetATN() *ATN
GetErrorListenerDispatch() ErrorListener
HasError() bool
GetError() RecognitionException
SetError(RecognitionException)
}
type BaseRecognizer struct {
@ -36,6 +39,7 @@ type BaseRecognizer struct {
LiteralNames []string
SymbolicNames []string
GrammarFileName string
SynErr RecognitionException
}
func NewBaseRecognizer() *BaseRecognizer {
@ -45,7 +49,10 @@ func NewBaseRecognizer() *BaseRecognizer {
return rec
}
//goland:noinspection GoUnusedGlobalVariable
var tokenTypeMapCache = make(map[string]int)
//goland:noinspection GoUnusedGlobalVariable
var ruleIndexMapCache = make(map[string]int)
func (b *BaseRecognizer) checkVersion(toolVersion string) {
@ -55,7 +62,19 @@ func (b *BaseRecognizer) checkVersion(toolVersion string) {
}
}
func (b *BaseRecognizer) Action(context RuleContext, ruleIndex, actionIndex int) {
func (b *BaseRecognizer) SetError(err RecognitionException) {
b.SynErr = err
}
func (b *BaseRecognizer) HasError() bool {
return b.SynErr != nil
}
func (b *BaseRecognizer) GetError() RecognitionException {
return b.SynErr
}
func (b *BaseRecognizer) Action(_ RuleContext, _, _ int) {
panic("action not implemented on Recognizer!")
}
@ -105,9 +124,11 @@ func (b *BaseRecognizer) SetState(v int) {
// return result
//}
// Get a map from rule names to rule indexes.
// GetRuleIndexMap Get a map from rule names to rule indexes.
//
// <p>Used for XPath and tree pattern compilation.</p>
// Used for XPath and tree pattern compilation.
//
// TODO: JI This is not yet implemented in the Go runtime. Maybe not needed.
func (b *BaseRecognizer) GetRuleIndexMap() map[string]int {
panic("Method not defined!")
@ -124,7 +145,8 @@ func (b *BaseRecognizer) GetRuleIndexMap() map[string]int {
// return result
}
func (b *BaseRecognizer) GetTokenType(tokenName string) int {
// GetTokenType get the token type based upon its name
func (b *BaseRecognizer) GetTokenType(_ string) int {
panic("Method not defined!")
// var ttype = b.GetTokenTypeMap()[tokenName]
// if (ttype !=nil) {
@ -162,26 +184,27 @@ func (b *BaseRecognizer) GetTokenType(tokenName string) int {
// }
//}
// What is the error header, normally line/character position information?//
// GetErrorHeader returns the error header, normally line/character position information.
//
// Can be overridden in sub structs embedding BaseRecognizer.
func (b *BaseRecognizer) GetErrorHeader(e RecognitionException) string {
line := e.GetOffendingToken().GetLine()
column := e.GetOffendingToken().GetColumn()
return "line " + strconv.Itoa(line) + ":" + strconv.Itoa(column)
}
// How should a token be displayed in an error message? The default
// GetTokenErrorDisplay shows how a token should be displayed in an error message.
//
// is to display just the text, but during development you might
// want to have a lot of information spit out. Override in that case
// to use t.String() (which, for CommonToken, dumps everything about
// the token). This is better than forcing you to override a method in
// your token objects because you don't have to go modify your lexer
// so that it creates a NewJava type.
// The default is to display just the text, but during development you might
// want to have a lot of information spit out. Override in that case
// to use t.String() (which, for CommonToken, dumps everything about
// the token). This is better than forcing you to override a method in
// your token objects because you don't have to go modify your lexer
// so that it creates a NewJava type.
//
// @deprecated This method is not called by the ANTLR 4 Runtime. Specific
// implementations of {@link ANTLRErrorStrategy} may provide a similar
// feature when necessary. For example, see
// {@link DefaultErrorStrategy//GetTokenErrorDisplay}.
// Deprecated: This method is not called by the ANTLR 4 Runtime. Specific
// implementations of [ANTLRErrorStrategy] may provide a similar
// feature when necessary. For example, see [DefaultErrorStrategy].GetTokenErrorDisplay()
func (b *BaseRecognizer) GetTokenErrorDisplay(t Token) string {
if t == nil {
return "<no token>"
@ -205,12 +228,14 @@ func (b *BaseRecognizer) GetErrorListenerDispatch() ErrorListener {
return NewProxyErrorListener(b.listeners)
}
// subclass needs to override these if there are sempreds or actions
// that the ATN interp needs to execute
func (b *BaseRecognizer) Sempred(localctx RuleContext, ruleIndex int, actionIndex int) bool {
// Sempred embedding structs need to override this if there are sempreds or actions
// that the ATN interpreter needs to execute
func (b *BaseRecognizer) Sempred(_ RuleContext, _ int, _ int) bool {
return true
}
func (b *BaseRecognizer) Precpred(localctx RuleContext, precedence int) bool {
// Precpred embedding structs need to override this if there are preceding predicates
// that the ATN interpreter needs to execute
func (b *BaseRecognizer) Precpred(_ RuleContext, _ int) bool {
return true
}

40
vendor/github.com/antlr4-go/antlr/v4/rule_context.go generated vendored Normal file
View File

@ -0,0 +1,40 @@
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
// RuleContext is a record of a single rule invocation. It knows
// which context invoked it, if any. If there is no parent context, then
// naturally the invoking state is not valid. The parent link
// provides a chain upwards from the current rule invocation to the root
// of the invocation tree, forming a stack.
//
// We actually carry no information about the rule associated with this context (except
// when parsing). We keep only the state number of the invoking state from
// the [ATN] submachine that invoked this. Contrast this with the s
// pointer inside [ParserRuleContext] that tracks the current state
// being "executed" for the current rule.
//
// The parent contexts are useful for computing lookahead sets and
// getting error information.
//
// These objects are used during parsing and prediction.
// For the special case of parsers, we use the struct
// [ParserRuleContext], which embeds a RuleContext.
//
// @see ParserRuleContext
type RuleContext interface {
RuleNode
GetInvokingState() int
SetInvokingState(int)
GetRuleIndex() int
IsEmpty() bool
GetAltNumber() int
SetAltNumber(altNumber int)
String([]string, RuleContext) string
}

View File

@ -9,14 +9,13 @@ import (
"strconv"
)
// A tree structure used to record the semantic context in which
// an ATN configuration is valid. It's either a single predicate,
// a conjunction {@code p1&&p2}, or a sum of products {@code p1||p2}.
// SemanticContext is a tree structure used to record the semantic context in which
//
// <p>I have scoped the {@link AND}, {@link OR}, and {@link Predicate} subclasses of
// {@link SemanticContext} within the scope of this outer class.</p>
// an ATN configuration is valid. It's either a single predicate,
// a conjunction p1 && p2, or a sum of products p1 || p2.
//
// I have scoped the AND, OR, and Predicate subclasses of
// [SemanticContext] within the scope of this outer ``class''
type SemanticContext interface {
Equals(other Collectable[SemanticContext]) bool
Hash() int
@ -80,7 +79,7 @@ func NewPredicate(ruleIndex, predIndex int, isCtxDependent bool) *Predicate {
var SemanticContextNone = NewPredicate(-1, -1, false)
func (p *Predicate) evalPrecedence(parser Recognizer, outerContext RuleContext) SemanticContext {
func (p *Predicate) evalPrecedence(_ Recognizer, _ RuleContext) SemanticContext {
return p
}
@ -198,7 +197,7 @@ type AND struct {
func NewAND(a, b SemanticContext) *AND {
operands := NewJStore[SemanticContext, Comparator[SemanticContext]](semctxEqInst)
operands := NewJStore[SemanticContext, Comparator[SemanticContext]](semctxEqInst, SemanticContextCollection, "NewAND() operands")
if aa, ok := a.(*AND); ok {
for _, o := range aa.opnds {
operands.Put(o)
@ -230,9 +229,7 @@ func NewAND(a, b SemanticContext) *AND {
vs := operands.Values()
opnds := make([]SemanticContext, len(vs))
for i, v := range vs {
opnds[i] = v.(SemanticContext)
}
copy(opnds, vs)
and := new(AND)
and.opnds = opnds
@ -316,12 +313,12 @@ func (a *AND) Hash() int {
return murmurFinish(h, len(a.opnds))
}
func (a *OR) Hash() int {
h := murmurInit(41) // Init with a value different from AND
for _, op := range a.opnds {
func (o *OR) Hash() int {
h := murmurInit(41) // Init with o value different from AND
for _, op := range o.opnds {
h = murmurUpdate(h, op.Hash())
}
return murmurFinish(h, len(a.opnds))
return murmurFinish(h, len(o.opnds))
}
func (a *AND) String() string {
@ -349,7 +346,7 @@ type OR struct {
func NewOR(a, b SemanticContext) *OR {
operands := NewJStore[SemanticContext, Comparator[SemanticContext]](semctxEqInst)
operands := NewJStore[SemanticContext, Comparator[SemanticContext]](semctxEqInst, SemanticContextCollection, "NewOR() operands")
if aa, ok := a.(*OR); ok {
for _, o := range aa.opnds {
operands.Put(o)
@ -382,9 +379,7 @@ func NewOR(a, b SemanticContext) *OR {
vs := operands.Values()
opnds := make([]SemanticContext, len(vs))
for i, v := range vs {
opnds[i] = v.(SemanticContext)
}
copy(opnds, vs)
o := new(OR)
o.opnds = opnds

281
vendor/github.com/antlr4-go/antlr/v4/statistics.go generated vendored Normal file
View File

@ -0,0 +1,281 @@
//go:build antlr.stats
package antlr
import (
"fmt"
"log"
"os"
"path/filepath"
"sort"
"strconv"
"sync"
)
// This file allows the user to collect statistics about the runtime of the ANTLR runtime. It is not enabled by default
// and so incurs no time penalty. To enable it, you must build the runtime with the antlr.stats build tag.
//
// Tells various components to collect statistics - because it is only true when this file is included, it will
// allow the compiler to completely eliminate all the code that is only used when collecting statistics.
const collectStats = true
// goRunStats is a collection of all the various data the ANTLR runtime has collected about a particular run.
// It is exported so that it can be used by others to look for things that are not already looked for in the
// runtime statistics.
type goRunStats struct {
// jStats is a slice of all the [JStatRec] records that have been created, which is one for EVERY collection created
// during a run. It is exported so that it can be used by others to look for things that are not already looked for
// within this package.
//
jStats []*JStatRec
jStatsLock sync.RWMutex
topN int
topNByMax []*JStatRec
topNByUsed []*JStatRec
unusedCollections map[CollectionSource]int
counts map[CollectionSource]int
}
const (
collectionsFile = "collections"
)
var (
Statistics = &goRunStats{
topN: 10,
}
)
type statsOption func(*goRunStats) error
// Configure allows the statistics system to be configured as the user wants and override the defaults
func (s *goRunStats) Configure(options ...statsOption) error {
for _, option := range options {
err := option(s)
if err != nil {
return err
}
}
return nil
}
// WithTopN sets the number of things to list in the report when we are concerned with the top N things.
//
// For example, if you want to see the top 20 collections by size, you can do:
//
// antlr.Statistics.Configure(antlr.WithTopN(20))
func WithTopN(topN int) statsOption {
return func(s *goRunStats) error {
s.topN = topN
return nil
}
}
// Analyze looks through all the statistical records and computes all the outputs that might be useful to the user.
//
// The function gathers and analyzes a number of statistics about any particular run of
// an ANTLR generated recognizer. In the vast majority of cases, the statistics are only
// useful to maintainers of ANTLR itself, but they can be useful to users as well. They may be
// especially useful in tracking down bugs or performance problems when an ANTLR user could
// supply the output from this package, but cannot supply the grammar file(s) they are using, even
// privately to the maintainers.
//
// The statistics are gathered by the runtime itself, and are not gathered by the parser or lexer, but the user
// must call this function their selves to analyze the statistics. This is because none of the infrastructure is
// extant unless the calling program is built with the antlr.stats tag like so:
//
// go build -tags antlr.stats .
//
// When a program is built with the antlr.stats tag, the Statistics object is created and available outside
// the package. The user can then call the [Statistics.Analyze] function to analyze the statistics and then call the
// [Statistics.Report] function to report the statistics.
//
// Please forward any questions about this package to the ANTLR discussion groups on GitHub or send to them to
// me [Jim Idle] directly at jimi@idle.ws
//
// [Jim Idle]: https:://github.com/jim-idle
func (s *goRunStats) Analyze() {
// Look for anything that looks strange and record it in our local maps etc for the report to present it
//
s.CollectionAnomalies()
s.TopNCollections()
}
// TopNCollections looks through all the statistical records and gathers the top ten collections by size.
func (s *goRunStats) TopNCollections() {
// Let's sort the stat records by MaxSize
//
sort.Slice(s.jStats, func(i, j int) bool {
return s.jStats[i].MaxSize > s.jStats[j].MaxSize
})
for i := 0; i < len(s.jStats) && i < s.topN; i++ {
s.topNByMax = append(s.topNByMax, s.jStats[i])
}
// Sort by the number of times used
//
sort.Slice(s.jStats, func(i, j int) bool {
return s.jStats[i].Gets+s.jStats[i].Puts > s.jStats[j].Gets+s.jStats[j].Puts
})
for i := 0; i < len(s.jStats) && i < s.topN; i++ {
s.topNByUsed = append(s.topNByUsed, s.jStats[i])
}
}
// Report dumps a markdown formatted report of all the statistics collected during a run to the given dir output
// path, which should represent a directory. Generated files will be prefixed with the given prefix and will be
// given a type name such as `anomalies` and a time stamp such as `2021-09-01T12:34:56` and a .md suffix.
func (s *goRunStats) Report(dir string, prefix string) error {
isDir, err := isDirectory(dir)
switch {
case err != nil:
return err
case !isDir:
return fmt.Errorf("output directory `%s` is not a directory", dir)
}
s.reportCollections(dir, prefix)
// Clean out any old data in case the user forgets
//
s.Reset()
return nil
}
func (s *goRunStats) Reset() {
s.jStats = nil
s.topNByUsed = nil
s.topNByMax = nil
}
func (s *goRunStats) reportCollections(dir, prefix string) {
cname := filepath.Join(dir, ".asciidoctor")
// If the file doesn't exist, create it, or append to the file
f, err := os.OpenFile(cname, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644)
if err != nil {
log.Fatal(err)
}
_, _ = f.WriteString(`// .asciidoctorconfig
++++
<style>
body {
font-family: "Quicksand", "Montserrat", "Helvetica";
background-color: black;
}
</style>
++++`)
_ = f.Close()
fname := filepath.Join(dir, prefix+"_"+"_"+collectionsFile+"_"+".adoc")
// If the file doesn't exist, create it, or append to the file
f, err = os.OpenFile(fname, os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0644)
if err != nil {
log.Fatal(err)
}
defer func(f *os.File) {
err := f.Close()
if err != nil {
log.Fatal(err)
}
}(f)
_, _ = f.WriteString("= Collections for " + prefix + "\n\n")
_, _ = f.WriteString("== Summary\n")
if s.unusedCollections != nil {
_, _ = f.WriteString("=== Unused Collections\n")
_, _ = f.WriteString("Unused collections incur a penalty for allocation that makes them a candidate for either\n")
_, _ = f.WriteString(" removal or optimization. If you are using a collection that is not used, you should\n")
_, _ = f.WriteString(" consider removing it. If you are using a collection that is used, but not very often,\n")
_, _ = f.WriteString(" you should consider using lazy initialization to defer the allocation until it is\n")
_, _ = f.WriteString(" actually needed.\n\n")
_, _ = f.WriteString("\n.Unused collections\n")
_, _ = f.WriteString(`[cols="<3,>1"]` + "\n\n")
_, _ = f.WriteString("|===\n")
_, _ = f.WriteString("| Type | Count\n")
for k, v := range s.unusedCollections {
_, _ = f.WriteString("| " + CollectionDescriptors[k].SybolicName + " | " + strconv.Itoa(v) + "\n")
}
f.WriteString("|===\n\n")
}
_, _ = f.WriteString("\n.Summary of Collections\n")
_, _ = f.WriteString(`[cols="<3,>1"]` + "\n\n")
_, _ = f.WriteString("|===\n")
_, _ = f.WriteString("| Type | Count\n")
for k, v := range s.counts {
_, _ = f.WriteString("| " + CollectionDescriptors[k].SybolicName + " | " + strconv.Itoa(v) + "\n")
}
_, _ = f.WriteString("| Total | " + strconv.Itoa(len(s.jStats)) + "\n")
_, _ = f.WriteString("|===\n\n")
_, _ = f.WriteString("\n.Summary of Top " + strconv.Itoa(s.topN) + " Collections by MaxSize\n")
_, _ = f.WriteString(`[cols="<1,<3,>1,>1,>1,>1"]` + "\n\n")
_, _ = f.WriteString("|===\n")
_, _ = f.WriteString("| Source | Description | MaxSize | EndSize | Puts | Gets\n")
for _, c := range s.topNByMax {
_, _ = f.WriteString("| " + CollectionDescriptors[c.Source].SybolicName + "\n")
_, _ = f.WriteString("| " + c.Description + "\n")
_, _ = f.WriteString("| " + strconv.Itoa(c.MaxSize) + "\n")
_, _ = f.WriteString("| " + strconv.Itoa(c.CurSize) + "\n")
_, _ = f.WriteString("| " + strconv.Itoa(c.Puts) + "\n")
_, _ = f.WriteString("| " + strconv.Itoa(c.Gets) + "\n")
_, _ = f.WriteString("\n")
}
_, _ = f.WriteString("|===\n\n")
_, _ = f.WriteString("\n.Summary of Top " + strconv.Itoa(s.topN) + " Collections by Access\n")
_, _ = f.WriteString(`[cols="<1,<3,>1,>1,>1,>1,>1"]` + "\n\n")
_, _ = f.WriteString("|===\n")
_, _ = f.WriteString("| Source | Description | MaxSize | EndSize | Puts | Gets | P+G\n")
for _, c := range s.topNByUsed {
_, _ = f.WriteString("| " + CollectionDescriptors[c.Source].SybolicName + "\n")
_, _ = f.WriteString("| " + c.Description + "\n")
_, _ = f.WriteString("| " + strconv.Itoa(c.MaxSize) + "\n")
_, _ = f.WriteString("| " + strconv.Itoa(c.CurSize) + "\n")
_, _ = f.WriteString("| " + strconv.Itoa(c.Puts) + "\n")
_, _ = f.WriteString("| " + strconv.Itoa(c.Gets) + "\n")
_, _ = f.WriteString("| " + strconv.Itoa(c.Gets+c.Puts) + "\n")
_, _ = f.WriteString("\n")
}
_, _ = f.WriteString("|===\n\n")
}
// AddJStatRec adds a [JStatRec] record to the [goRunStats] collection when build runtimeConfig antlr.stats is enabled.
func (s *goRunStats) AddJStatRec(rec *JStatRec) {
s.jStatsLock.Lock()
defer s.jStatsLock.Unlock()
s.jStats = append(s.jStats, rec)
}
// CollectionAnomalies looks through all the statistical records and gathers any anomalies that have been found.
func (s *goRunStats) CollectionAnomalies() {
s.jStatsLock.RLock()
defer s.jStatsLock.RUnlock()
s.counts = make(map[CollectionSource]int, len(s.jStats))
for _, c := range s.jStats {
// Accumlate raw counts
//
s.counts[c.Source]++
// Look for allocated but unused collections and count them
if c.MaxSize == 0 && c.Puts == 0 {
if s.unusedCollections == nil {
s.unusedCollections = make(map[CollectionSource]int)
}
s.unusedCollections[c.Source]++
}
if c.MaxSize > 6000 {
fmt.Println("Collection ", c.Description, "accumulated a max size of ", c.MaxSize, " - this is probably too large and indicates a poorly formed grammar")
}
}
}

23
vendor/github.com/antlr4-go/antlr/v4/stats_data.go generated vendored Normal file
View File

@ -0,0 +1,23 @@
package antlr
// A JStatRec is a record of a particular use of a [JStore], [JMap] or JPCMap] collection. Typically, it will be
// used to look for unused collections that wre allocated anyway, problems with hash bucket clashes, and anomalies
// such as huge numbers of Gets with no entries found GetNoEnt. You can refer to the CollectionAnomalies() function
// for ideas on what can be gleaned from these statistics about collections.
type JStatRec struct {
Source CollectionSource
MaxSize int
CurSize int
Gets int
GetHits int
GetMisses int
GetHashConflicts int
GetNoEnt int
Puts int
PutHits int
PutMisses int
PutHashConflicts int
MaxSlotSize int
Description string
CreateStack []byte
}

View File

@ -35,6 +35,8 @@ type Token interface {
GetTokenSource() TokenSource
GetInputStream() CharStream
String() string
}
type BaseToken struct {
@ -53,7 +55,7 @@ type BaseToken struct {
const (
TokenInvalidType = 0
// During lookahead operations, this "token" signifies we hit rule end ATN state
// TokenEpsilon - during lookahead operations, this "token" signifies we hit the rule end [ATN] state
// and did not follow it despite needing to.
TokenEpsilon = -2
@ -61,15 +63,16 @@ const (
TokenEOF = -1
// All tokens go to the parser (unless Skip() is called in that rule)
// TokenDefaultChannel is the default channel upon which tokens are sent to the parser.
//
// All tokens go to the parser (unless [Skip] is called in the lexer rule)
// on a particular "channel". The parser tunes to a particular channel
// so that whitespace etc... can go to the parser on a "hidden" channel.
TokenDefaultChannel = 0
// Anything on different channel than DEFAULT_CHANNEL is not parsed
// by parser.
// TokenHiddenChannel defines the normal hidden channel - the parser wil not see tokens that are not on [TokenDefaultChannel].
//
// Anything on a different channel than TokenDefaultChannel is not parsed by parser.
TokenHiddenChannel = 1
)
@ -118,21 +121,22 @@ func (b *BaseToken) GetInputStream() CharStream {
}
type CommonToken struct {
*BaseToken
BaseToken
}
func NewCommonToken(source *TokenSourceCharStreamPair, tokenType, channel, start, stop int) *CommonToken {
t := new(CommonToken)
t := &CommonToken{
BaseToken: BaseToken{
source: source,
tokenType: tokenType,
channel: channel,
start: start,
stop: stop,
tokenIndex: -1,
},
}
t.BaseToken = new(BaseToken)
t.source = source
t.tokenType = tokenType
t.channel = channel
t.start = start
t.stop = stop
t.tokenIndex = -1
if t.source.tokenSource != nil {
t.line = source.tokenSource.GetLine()
t.column = source.tokenSource.GetCharPositionInLine()

View File

@ -8,13 +8,14 @@ type TokenStream interface {
IntStream
LT(k int) Token
Reset()
Get(index int) Token
GetTokenSource() TokenSource
SetTokenSource(TokenSource)
GetAllText() string
GetTextFromInterval(*Interval) string
GetTextFromInterval(Interval) string
GetTextFromRuleContext(RuleContext) string
GetTextFromTokens(Token, Token) string
}

View File

@ -86,14 +86,15 @@ import (
// first example shows.</p>
const (
Default_Program_Name = "default"
Program_Init_Size = 100
Min_Token_Index = 0
DefaultProgramName = "default"
ProgramInitSize = 100
MinTokenIndex = 0
)
// Define the rewrite operation hierarchy
type RewriteOperation interface {
// Execute the rewrite operation by possibly adding to the buffer.
// Return the index of the next token to operate on.
Execute(buffer *bytes.Buffer) int
@ -112,19 +113,19 @@ type RewriteOperation interface {
type BaseRewriteOperation struct {
//Current index of rewrites list
instruction_index int
instructionIndex int
//Token buffer index
index int
//Substitution text
text string
//Actual operation name
op_name string
opName string
//Pointer to token steam
tokens TokenStream
}
func (op *BaseRewriteOperation) GetInstructionIndex() int {
return op.instruction_index
return op.instructionIndex
}
func (op *BaseRewriteOperation) GetIndex() int {
@ -136,7 +137,7 @@ func (op *BaseRewriteOperation) GetText() string {
}
func (op *BaseRewriteOperation) GetOpName() string {
return op.op_name
return op.opName
}
func (op *BaseRewriteOperation) GetTokens() TokenStream {
@ -144,7 +145,7 @@ func (op *BaseRewriteOperation) GetTokens() TokenStream {
}
func (op *BaseRewriteOperation) SetInstructionIndex(val int) {
op.instruction_index = val
op.instructionIndex = val
}
func (op *BaseRewriteOperation) SetIndex(val int) {
@ -156,20 +157,20 @@ func (op *BaseRewriteOperation) SetText(val string) {
}
func (op *BaseRewriteOperation) SetOpName(val string) {
op.op_name = val
op.opName = val
}
func (op *BaseRewriteOperation) SetTokens(val TokenStream) {
op.tokens = val
}
func (op *BaseRewriteOperation) Execute(buffer *bytes.Buffer) int {
func (op *BaseRewriteOperation) Execute(_ *bytes.Buffer) int {
return op.index
}
func (op *BaseRewriteOperation) String() string {
return fmt.Sprintf("<%s@%d:\"%s\">",
op.op_name,
op.opName,
op.tokens.Get(op.GetIndex()),
op.text,
)
@ -182,10 +183,10 @@ type InsertBeforeOp struct {
func NewInsertBeforeOp(index int, text string, stream TokenStream) *InsertBeforeOp {
return &InsertBeforeOp{BaseRewriteOperation: BaseRewriteOperation{
index: index,
text: text,
op_name: "InsertBeforeOp",
tokens: stream,
index: index,
text: text,
opName: "InsertBeforeOp",
tokens: stream,
}}
}
@ -201,20 +202,21 @@ func (op *InsertBeforeOp) String() string {
return op.BaseRewriteOperation.String()
}
// Distinguish between insert after/before to do the "insert afters"
// first and then the "insert befores" at same index. Implementation
// of "insert after" is "insert before index+1".
// InsertAfterOp distinguishes between insert after/before to do the "insert after" instructions
// first and then the "insert before" instructions at same index. Implementation
// of "insert after" is "insert before index+1".
type InsertAfterOp struct {
BaseRewriteOperation
}
func NewInsertAfterOp(index int, text string, stream TokenStream) *InsertAfterOp {
return &InsertAfterOp{BaseRewriteOperation: BaseRewriteOperation{
index: index + 1,
text: text,
tokens: stream,
}}
return &InsertAfterOp{
BaseRewriteOperation: BaseRewriteOperation{
index: index + 1,
text: text,
tokens: stream,
},
}
}
func (op *InsertAfterOp) Execute(buffer *bytes.Buffer) int {
@ -229,7 +231,7 @@ func (op *InsertAfterOp) String() string {
return op.BaseRewriteOperation.String()
}
// I'm going to try replacing range from x..y with (y-x)+1 ReplaceOp
// ReplaceOp tries to replace range from x..y with (y-x)+1 ReplaceOp
// instructions.
type ReplaceOp struct {
BaseRewriteOperation
@ -239,10 +241,10 @@ type ReplaceOp struct {
func NewReplaceOp(from, to int, text string, stream TokenStream) *ReplaceOp {
return &ReplaceOp{
BaseRewriteOperation: BaseRewriteOperation{
index: from,
text: text,
op_name: "ReplaceOp",
tokens: stream,
index: from,
text: text,
opName: "ReplaceOp",
tokens: stream,
},
LastIndex: to,
}
@ -270,17 +272,17 @@ type TokenStreamRewriter struct {
// You may have multiple, named streams of rewrite operations.
// I'm calling these things "programs."
// Maps String (name) &rarr; rewrite (List)
programs map[string][]RewriteOperation
last_rewrite_token_indexes map[string]int
programs map[string][]RewriteOperation
lastRewriteTokenIndexes map[string]int
}
func NewTokenStreamRewriter(tokens TokenStream) *TokenStreamRewriter {
return &TokenStreamRewriter{
tokens: tokens,
programs: map[string][]RewriteOperation{
Default_Program_Name: make([]RewriteOperation, 0, Program_Init_Size),
DefaultProgramName: make([]RewriteOperation, 0, ProgramInitSize),
},
last_rewrite_token_indexes: map[string]int{},
lastRewriteTokenIndexes: map[string]int{},
}
}
@ -291,110 +293,110 @@ func (tsr *TokenStreamRewriter) GetTokenStream() TokenStream {
// Rollback the instruction stream for a program so that
// the indicated instruction (via instructionIndex) is no
// longer in the stream. UNTESTED!
func (tsr *TokenStreamRewriter) Rollback(program_name string, instruction_index int) {
is, ok := tsr.programs[program_name]
func (tsr *TokenStreamRewriter) Rollback(programName string, instructionIndex int) {
is, ok := tsr.programs[programName]
if ok {
tsr.programs[program_name] = is[Min_Token_Index:instruction_index]
tsr.programs[programName] = is[MinTokenIndex:instructionIndex]
}
}
func (tsr *TokenStreamRewriter) RollbackDefault(instruction_index int) {
tsr.Rollback(Default_Program_Name, instruction_index)
func (tsr *TokenStreamRewriter) RollbackDefault(instructionIndex int) {
tsr.Rollback(DefaultProgramName, instructionIndex)
}
// Reset the program so that no instructions exist
func (tsr *TokenStreamRewriter) DeleteProgram(program_name string) {
tsr.Rollback(program_name, Min_Token_Index) //TODO: double test on that cause lower bound is not included
// DeleteProgram Reset the program so that no instructions exist
func (tsr *TokenStreamRewriter) DeleteProgram(programName string) {
tsr.Rollback(programName, MinTokenIndex) //TODO: double test on that cause lower bound is not included
}
func (tsr *TokenStreamRewriter) DeleteProgramDefault() {
tsr.DeleteProgram(Default_Program_Name)
tsr.DeleteProgram(DefaultProgramName)
}
func (tsr *TokenStreamRewriter) InsertAfter(program_name string, index int, text string) {
func (tsr *TokenStreamRewriter) InsertAfter(programName string, index int, text string) {
// to insert after, just insert before next index (even if past end)
var op RewriteOperation = NewInsertAfterOp(index, text, tsr.tokens)
rewrites := tsr.GetProgram(program_name)
rewrites := tsr.GetProgram(programName)
op.SetInstructionIndex(len(rewrites))
tsr.AddToProgram(program_name, op)
tsr.AddToProgram(programName, op)
}
func (tsr *TokenStreamRewriter) InsertAfterDefault(index int, text string) {
tsr.InsertAfter(Default_Program_Name, index, text)
tsr.InsertAfter(DefaultProgramName, index, text)
}
func (tsr *TokenStreamRewriter) InsertAfterToken(program_name string, token Token, text string) {
tsr.InsertAfter(program_name, token.GetTokenIndex(), text)
func (tsr *TokenStreamRewriter) InsertAfterToken(programName string, token Token, text string) {
tsr.InsertAfter(programName, token.GetTokenIndex(), text)
}
func (tsr *TokenStreamRewriter) InsertBefore(program_name string, index int, text string) {
func (tsr *TokenStreamRewriter) InsertBefore(programName string, index int, text string) {
var op RewriteOperation = NewInsertBeforeOp(index, text, tsr.tokens)
rewrites := tsr.GetProgram(program_name)
rewrites := tsr.GetProgram(programName)
op.SetInstructionIndex(len(rewrites))
tsr.AddToProgram(program_name, op)
tsr.AddToProgram(programName, op)
}
func (tsr *TokenStreamRewriter) InsertBeforeDefault(index int, text string) {
tsr.InsertBefore(Default_Program_Name, index, text)
tsr.InsertBefore(DefaultProgramName, index, text)
}
func (tsr *TokenStreamRewriter) InsertBeforeToken(program_name string, token Token, text string) {
tsr.InsertBefore(program_name, token.GetTokenIndex(), text)
func (tsr *TokenStreamRewriter) InsertBeforeToken(programName string, token Token, text string) {
tsr.InsertBefore(programName, token.GetTokenIndex(), text)
}
func (tsr *TokenStreamRewriter) Replace(program_name string, from, to int, text string) {
func (tsr *TokenStreamRewriter) Replace(programName string, from, to int, text string) {
if from > to || from < 0 || to < 0 || to >= tsr.tokens.Size() {
panic(fmt.Sprintf("replace: range invalid: %d..%d(size=%d)",
from, to, tsr.tokens.Size()))
}
var op RewriteOperation = NewReplaceOp(from, to, text, tsr.tokens)
rewrites := tsr.GetProgram(program_name)
rewrites := tsr.GetProgram(programName)
op.SetInstructionIndex(len(rewrites))
tsr.AddToProgram(program_name, op)
tsr.AddToProgram(programName, op)
}
func (tsr *TokenStreamRewriter) ReplaceDefault(from, to int, text string) {
tsr.Replace(Default_Program_Name, from, to, text)
tsr.Replace(DefaultProgramName, from, to, text)
}
func (tsr *TokenStreamRewriter) ReplaceDefaultPos(index int, text string) {
tsr.ReplaceDefault(index, index, text)
}
func (tsr *TokenStreamRewriter) ReplaceToken(program_name string, from, to Token, text string) {
tsr.Replace(program_name, from.GetTokenIndex(), to.GetTokenIndex(), text)
func (tsr *TokenStreamRewriter) ReplaceToken(programName string, from, to Token, text string) {
tsr.Replace(programName, from.GetTokenIndex(), to.GetTokenIndex(), text)
}
func (tsr *TokenStreamRewriter) ReplaceTokenDefault(from, to Token, text string) {
tsr.ReplaceToken(Default_Program_Name, from, to, text)
tsr.ReplaceToken(DefaultProgramName, from, to, text)
}
func (tsr *TokenStreamRewriter) ReplaceTokenDefaultPos(index Token, text string) {
tsr.ReplaceTokenDefault(index, index, text)
}
func (tsr *TokenStreamRewriter) Delete(program_name string, from, to int) {
tsr.Replace(program_name, from, to, "")
func (tsr *TokenStreamRewriter) Delete(programName string, from, to int) {
tsr.Replace(programName, from, to, "")
}
func (tsr *TokenStreamRewriter) DeleteDefault(from, to int) {
tsr.Delete(Default_Program_Name, from, to)
tsr.Delete(DefaultProgramName, from, to)
}
func (tsr *TokenStreamRewriter) DeleteDefaultPos(index int) {
tsr.DeleteDefault(index, index)
}
func (tsr *TokenStreamRewriter) DeleteToken(program_name string, from, to Token) {
tsr.ReplaceToken(program_name, from, to, "")
func (tsr *TokenStreamRewriter) DeleteToken(programName string, from, to Token) {
tsr.ReplaceToken(programName, from, to, "")
}
func (tsr *TokenStreamRewriter) DeleteTokenDefault(from, to Token) {
tsr.DeleteToken(Default_Program_Name, from, to)
tsr.DeleteToken(DefaultProgramName, from, to)
}
func (tsr *TokenStreamRewriter) GetLastRewriteTokenIndex(program_name string) int {
i, ok := tsr.last_rewrite_token_indexes[program_name]
func (tsr *TokenStreamRewriter) GetLastRewriteTokenIndex(programName string) int {
i, ok := tsr.lastRewriteTokenIndexes[programName]
if !ok {
return -1
}
@ -402,15 +404,15 @@ func (tsr *TokenStreamRewriter) GetLastRewriteTokenIndex(program_name string) in
}
func (tsr *TokenStreamRewriter) GetLastRewriteTokenIndexDefault() int {
return tsr.GetLastRewriteTokenIndex(Default_Program_Name)
return tsr.GetLastRewriteTokenIndex(DefaultProgramName)
}
func (tsr *TokenStreamRewriter) SetLastRewriteTokenIndex(program_name string, i int) {
tsr.last_rewrite_token_indexes[program_name] = i
func (tsr *TokenStreamRewriter) SetLastRewriteTokenIndex(programName string, i int) {
tsr.lastRewriteTokenIndexes[programName] = i
}
func (tsr *TokenStreamRewriter) InitializeProgram(name string) []RewriteOperation {
is := make([]RewriteOperation, 0, Program_Init_Size)
is := make([]RewriteOperation, 0, ProgramInitSize)
tsr.programs[name] = is
return is
}
@ -429,24 +431,24 @@ func (tsr *TokenStreamRewriter) GetProgram(name string) []RewriteOperation {
return is
}
// Return the text from the original tokens altered per the
// GetTextDefault returns the text from the original tokens altered per the
// instructions given to this rewriter.
func (tsr *TokenStreamRewriter) GetTextDefault() string {
return tsr.GetText(
Default_Program_Name,
DefaultProgramName,
NewInterval(0, tsr.tokens.Size()-1))
}
// Return the text from the original tokens altered per the
// GetText returns the text from the original tokens altered per the
// instructions given to this rewriter.
func (tsr *TokenStreamRewriter) GetText(program_name string, interval *Interval) string {
rewrites := tsr.programs[program_name]
func (tsr *TokenStreamRewriter) GetText(programName string, interval Interval) string {
rewrites := tsr.programs[programName]
start := interval.Start
stop := interval.Stop
// ensure start/end are in range
stop = min(stop, tsr.tokens.Size()-1)
start = max(start, 0)
if rewrites == nil || len(rewrites) == 0 {
if len(rewrites) == 0 {
return tsr.tokens.GetTextFromInterval(interval) // no instructions to execute
}
buf := bytes.Buffer{}
@ -482,11 +484,13 @@ func (tsr *TokenStreamRewriter) GetText(program_name string, interval *Interval)
return buf.String()
}
// We need to combine operations and report invalid operations (like
// overlapping replaces that are not completed nested). Inserts to
// same index need to be combined etc... Here are the cases:
// reduceToSingleOperationPerIndex combines operations and report invalid operations (like
// overlapping replaces that are not completed nested). Inserts to
// same index need to be combined etc...
//
// I.i.u I.j.v leave alone, nonoverlapping
// Here are the cases:
//
// I.i.u I.j.v leave alone, non-overlapping
// I.i.u I.i.v combine: Iivu
//
// R.i-j.u R.x-y.v | i-j in x-y delete first R
@ -498,38 +502,38 @@ func (tsr *TokenStreamRewriter) GetText(program_name string, interval *Interval)
// D.i-j.u D.x-y.v | boundaries overlap combine to max(min)..max(right)
//
// I.i.u R.x-y.v | i in (x+1)-y delete I (since insert before
// we're not deleting i)
// I.i.u R.x-y.v | i not in (x+1)-y leave alone, nonoverlapping
// we're not deleting i)
// I.i.u R.x-y.v | i not in (x+1)-y leave alone, non-overlapping
// R.x-y.v I.i.u | i in x-y ERROR
// R.x-y.v I.x.u R.x-y.uv (combine, delete I)
// R.x-y.v I.i.u | i not in x-y leave alone, nonoverlapping
// R.x-y.v I.i.u | i not in x-y leave alone, non-overlapping
//
// I.i.u = insert u before op @ index i
// R.x-y.u = replace x-y indexed tokens with u
//
// First we need to examine replaces. For any replace op:
// First we need to examine replaces. For any replace op:
//
// 1. wipe out any insertions before op within that range.
// 2. Drop any replace op before that is contained completely within
// that range.
// 3. Throw exception upon boundary overlap with any previous replace.
// 1. wipe out any insertions before op within that range.
// 2. Drop any replace op before that is contained completely within
// that range.
// 3. Throw exception upon boundary overlap with any previous replace.
//
// Then we can deal with inserts:
// Then we can deal with inserts:
//
// 1. for any inserts to same index, combine even if not adjacent.
// 2. for any prior replace with same left boundary, combine this
// insert with replace and delete this replace.
// 3. throw exception if index in same range as previous replace
// 1. for any inserts to same index, combine even if not adjacent.
// 2. for any prior replace with same left boundary, combine this
// insert with replace and delete this 'replace'.
// 3. throw exception if index in same range as previous replace
//
// Don't actually delete; make op null in list. Easier to walk list.
// Later we can throw as we add to index &rarr; op map.
// Don't actually delete; make op null in list. Easier to walk list.
// Later we can throw as we add to index &rarr; op map.
//
// Note that I.2 R.2-2 will wipe out I.2 even though, technically, the
// inserted stuff would be before the replace range. But, if you
// add tokens in front of a method body '{' and then delete the method
// body, I think the stuff before the '{' you added should disappear too.
// Note that I.2 R.2-2 will wipe out I.2 even though, technically, the
// inserted stuff would be before the 'replace' range. But, if you
// add tokens in front of a method body '{' and then delete the method
// body, I think the stuff before the '{' you added should disappear too.
//
// Return a map from token index to operation.
// The func returns a map from token index to operation.
func reduceToSingleOperationPerIndex(rewrites []RewriteOperation) map[int]RewriteOperation {
// WALK REPLACES
for i := 0; i < len(rewrites); i++ {
@ -547,7 +551,7 @@ func reduceToSingleOperationPerIndex(rewrites []RewriteOperation) map[int]Rewrit
if iop.index == rop.index {
// E.g., insert before 2, delete 2..2; update replace
// text to include insert before, kill insert
rewrites[iop.instruction_index] = nil
rewrites[iop.instructionIndex] = nil
if rop.text != "" {
rop.text = iop.text + rop.text
} else {
@ -555,7 +559,7 @@ func reduceToSingleOperationPerIndex(rewrites []RewriteOperation) map[int]Rewrit
}
} else if iop.index > rop.index && iop.index <= rop.LastIndex {
// delete insert as it's a no-op.
rewrites[iop.instruction_index] = nil
rewrites[iop.instructionIndex] = nil
}
}
}
@ -564,7 +568,7 @@ func reduceToSingleOperationPerIndex(rewrites []RewriteOperation) map[int]Rewrit
if prevop, ok := rewrites[j].(*ReplaceOp); ok {
if prevop.index >= rop.index && prevop.LastIndex <= rop.LastIndex {
// delete replace as it's a no-op.
rewrites[prevop.instruction_index] = nil
rewrites[prevop.instructionIndex] = nil
continue
}
// throw exception unless disjoint or identical
@ -572,10 +576,9 @@ func reduceToSingleOperationPerIndex(rewrites []RewriteOperation) map[int]Rewrit
// Delete special case of replace (text==null):
// D.i-j.u D.x-y.v | boundaries overlap combine to max(min)..max(right)
if prevop.text == "" && rop.text == "" && !disjoint {
rewrites[prevop.instruction_index] = nil
rewrites[prevop.instructionIndex] = nil
rop.index = min(prevop.index, rop.index)
rop.LastIndex = max(prevop.LastIndex, rop.LastIndex)
println("new rop" + rop.String()) //TODO: remove console write, taken from Java version
} else if !disjoint {
panic("replace op boundaries of " + rop.String() + " overlap with previous " + prevop.String())
}
@ -607,7 +610,7 @@ func reduceToSingleOperationPerIndex(rewrites []RewriteOperation) map[int]Rewrit
if prevIop, ok := rewrites[j].(*InsertBeforeOp); ok {
if prevIop.index == iop.GetIndex() {
iop.SetText(iop.GetText() + prevIop.text)
rewrites[prevIop.instruction_index] = nil
rewrites[prevIop.instructionIndex] = nil
}
}
}

View File

@ -72,7 +72,7 @@ func (t *BaseTransition) getSerializationType() int {
return t.serializationType
}
func (t *BaseTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool {
func (t *BaseTransition) Matches(_, _, _ int) bool {
panic("Not implemented")
}
@ -89,6 +89,7 @@ const (
TransitionPRECEDENCE = 10
)
//goland:noinspection GoUnusedGlobalVariable
var TransitionserializationNames = []string{
"INVALID",
"EPSILON",
@ -127,19 +128,22 @@ var TransitionserializationNames = []string{
// TransitionPRECEDENCE
//}
// AtomTransition
// TODO: make all transitions sets? no, should remove set edges
type AtomTransition struct {
*BaseTransition
BaseTransition
}
func NewAtomTransition(target ATNState, intervalSet int) *AtomTransition {
t := new(AtomTransition)
t.BaseTransition = NewBaseTransition(target)
t.label = intervalSet // The token type or character value or, signifies special intervalSet.
t := &AtomTransition{
BaseTransition: BaseTransition{
target: target,
serializationType: TransitionATOM,
label: intervalSet,
isEpsilon: false,
},
}
t.intervalSet = t.makeLabel()
t.serializationType = TransitionATOM
return t
}
@ -150,7 +154,7 @@ func (t *AtomTransition) makeLabel() *IntervalSet {
return s
}
func (t *AtomTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool {
func (t *AtomTransition) Matches(symbol, _, _ int) bool {
return t.label == symbol
}
@ -159,48 +163,45 @@ func (t *AtomTransition) String() string {
}
type RuleTransition struct {
*BaseTransition
BaseTransition
followState ATNState
ruleIndex, precedence int
}
func NewRuleTransition(ruleStart ATNState, ruleIndex, precedence int, followState ATNState) *RuleTransition {
t := new(RuleTransition)
t.BaseTransition = NewBaseTransition(ruleStart)
t.ruleIndex = ruleIndex
t.precedence = precedence
t.followState = followState
t.serializationType = TransitionRULE
t.isEpsilon = true
return t
return &RuleTransition{
BaseTransition: BaseTransition{
target: ruleStart,
isEpsilon: true,
serializationType: TransitionRULE,
},
ruleIndex: ruleIndex,
precedence: precedence,
followState: followState,
}
}
func (t *RuleTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool {
func (t *RuleTransition) Matches(_, _, _ int) bool {
return false
}
type EpsilonTransition struct {
*BaseTransition
BaseTransition
outermostPrecedenceReturn int
}
func NewEpsilonTransition(target ATNState, outermostPrecedenceReturn int) *EpsilonTransition {
t := new(EpsilonTransition)
t.BaseTransition = NewBaseTransition(target)
t.serializationType = TransitionEPSILON
t.isEpsilon = true
t.outermostPrecedenceReturn = outermostPrecedenceReturn
return t
return &EpsilonTransition{
BaseTransition: BaseTransition{
target: target,
serializationType: TransitionEPSILON,
isEpsilon: true,
},
outermostPrecedenceReturn: outermostPrecedenceReturn,
}
}
func (t *EpsilonTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool {
func (t *EpsilonTransition) Matches(_, _, _ int) bool {
return false
}
@ -209,19 +210,20 @@ func (t *EpsilonTransition) String() string {
}
type RangeTransition struct {
*BaseTransition
BaseTransition
start, stop int
}
func NewRangeTransition(target ATNState, start, stop int) *RangeTransition {
t := new(RangeTransition)
t.BaseTransition = NewBaseTransition(target)
t.serializationType = TransitionRANGE
t.start = start
t.stop = stop
t := &RangeTransition{
BaseTransition: BaseTransition{
target: target,
serializationType: TransitionRANGE,
isEpsilon: false,
},
start: start,
stop: stop,
}
t.intervalSet = t.makeLabel()
return t
}
@ -232,7 +234,7 @@ func (t *RangeTransition) makeLabel() *IntervalSet {
return s
}
func (t *RangeTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool {
func (t *RangeTransition) Matches(symbol, _, _ int) bool {
return symbol >= t.start && symbol <= t.stop
}
@ -252,40 +254,41 @@ type AbstractPredicateTransition interface {
}
type BaseAbstractPredicateTransition struct {
*BaseTransition
BaseTransition
}
func NewBasePredicateTransition(target ATNState) *BaseAbstractPredicateTransition {
t := new(BaseAbstractPredicateTransition)
t.BaseTransition = NewBaseTransition(target)
return t
return &BaseAbstractPredicateTransition{
BaseTransition: BaseTransition{
target: target,
},
}
}
func (a *BaseAbstractPredicateTransition) IAbstractPredicateTransitionFoo() {}
type PredicateTransition struct {
*BaseAbstractPredicateTransition
BaseAbstractPredicateTransition
isCtxDependent bool
ruleIndex, predIndex int
}
func NewPredicateTransition(target ATNState, ruleIndex, predIndex int, isCtxDependent bool) *PredicateTransition {
t := new(PredicateTransition)
t.BaseAbstractPredicateTransition = NewBasePredicateTransition(target)
t.serializationType = TransitionPREDICATE
t.ruleIndex = ruleIndex
t.predIndex = predIndex
t.isCtxDependent = isCtxDependent // e.g., $i ref in pred
t.isEpsilon = true
return t
return &PredicateTransition{
BaseAbstractPredicateTransition: BaseAbstractPredicateTransition{
BaseTransition: BaseTransition{
target: target,
serializationType: TransitionPREDICATE,
isEpsilon: true,
},
},
isCtxDependent: isCtxDependent,
ruleIndex: ruleIndex,
predIndex: predIndex,
}
}
func (t *PredicateTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool {
func (t *PredicateTransition) Matches(_, _, _ int) bool {
return false
}
@ -298,26 +301,25 @@ func (t *PredicateTransition) String() string {
}
type ActionTransition struct {
*BaseTransition
BaseTransition
isCtxDependent bool
ruleIndex, actionIndex, predIndex int
}
func NewActionTransition(target ATNState, ruleIndex, actionIndex int, isCtxDependent bool) *ActionTransition {
t := new(ActionTransition)
t.BaseTransition = NewBaseTransition(target)
t.serializationType = TransitionACTION
t.ruleIndex = ruleIndex
t.actionIndex = actionIndex
t.isCtxDependent = isCtxDependent // e.g., $i ref in pred
t.isEpsilon = true
return t
return &ActionTransition{
BaseTransition: BaseTransition{
target: target,
serializationType: TransitionACTION,
isEpsilon: true,
},
isCtxDependent: isCtxDependent,
ruleIndex: ruleIndex,
actionIndex: actionIndex,
}
}
func (t *ActionTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool {
func (t *ActionTransition) Matches(_, _, _ int) bool {
return false
}
@ -326,26 +328,27 @@ func (t *ActionTransition) String() string {
}
type SetTransition struct {
*BaseTransition
BaseTransition
}
func NewSetTransition(target ATNState, set *IntervalSet) *SetTransition {
t := &SetTransition{
BaseTransition: BaseTransition{
target: target,
serializationType: TransitionSET,
},
}
t := new(SetTransition)
t.BaseTransition = NewBaseTransition(target)
t.serializationType = TransitionSET
if set != nil {
t.intervalSet = set
} else {
t.intervalSet = NewIntervalSet()
t.intervalSet.addOne(TokenInvalidType)
}
return t
}
func (t *SetTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool {
func (t *SetTransition) Matches(symbol, _, _ int) bool {
return t.intervalSet.contains(symbol)
}
@ -354,16 +357,24 @@ func (t *SetTransition) String() string {
}
type NotSetTransition struct {
*SetTransition
SetTransition
}
func NewNotSetTransition(target ATNState, set *IntervalSet) *NotSetTransition {
t := new(NotSetTransition)
t.SetTransition = NewSetTransition(target, set)
t.serializationType = TransitionNOTSET
t := &NotSetTransition{
SetTransition: SetTransition{
BaseTransition: BaseTransition{
target: target,
serializationType: TransitionNOTSET,
},
},
}
if set != nil {
t.intervalSet = set
} else {
t.intervalSet = NewIntervalSet()
t.intervalSet.addOne(TokenInvalidType)
}
return t
}
@ -377,16 +388,16 @@ func (t *NotSetTransition) String() string {
}
type WildcardTransition struct {
*BaseTransition
BaseTransition
}
func NewWildcardTransition(target ATNState) *WildcardTransition {
t := new(WildcardTransition)
t.BaseTransition = NewBaseTransition(target)
t.serializationType = TransitionWILDCARD
return t
return &WildcardTransition{
BaseTransition: BaseTransition{
target: target,
serializationType: TransitionWILDCARD,
},
}
}
func (t *WildcardTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool {
@ -398,24 +409,24 @@ func (t *WildcardTransition) String() string {
}
type PrecedencePredicateTransition struct {
*BaseAbstractPredicateTransition
BaseAbstractPredicateTransition
precedence int
}
func NewPrecedencePredicateTransition(target ATNState, precedence int) *PrecedencePredicateTransition {
t := new(PrecedencePredicateTransition)
t.BaseAbstractPredicateTransition = NewBasePredicateTransition(target)
t.serializationType = TransitionPRECEDENCE
t.precedence = precedence
t.isEpsilon = true
return t
return &PrecedencePredicateTransition{
BaseAbstractPredicateTransition: BaseAbstractPredicateTransition{
BaseTransition: BaseTransition{
target: target,
serializationType: TransitionPRECEDENCE,
isEpsilon: true,
},
},
precedence: precedence,
}
}
func (t *PrecedencePredicateTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool {
func (t *PrecedencePredicateTransition) Matches(_, _, _ int) bool {
return false
}

View File

@ -21,29 +21,23 @@ type Tree interface {
type SyntaxTree interface {
Tree
GetSourceInterval() *Interval
GetSourceInterval() Interval
}
type ParseTree interface {
SyntaxTree
Accept(Visitor ParseTreeVisitor) interface{}
GetText() string
ToStringTree([]string, Recognizer) string
}
type RuleNode interface {
ParseTree
GetRuleContext() RuleContext
GetBaseRuleContext() *BaseRuleContext
}
type TerminalNode interface {
ParseTree
GetSymbol() Token
}
@ -64,12 +58,12 @@ type BaseParseTreeVisitor struct{}
var _ ParseTreeVisitor = &BaseParseTreeVisitor{}
func (v *BaseParseTreeVisitor) Visit(tree ParseTree) interface{} { return tree.Accept(v) }
func (v *BaseParseTreeVisitor) VisitChildren(node RuleNode) interface{} { return nil }
func (v *BaseParseTreeVisitor) VisitTerminal(node TerminalNode) interface{} { return nil }
func (v *BaseParseTreeVisitor) VisitErrorNode(node ErrorNode) interface{} { return nil }
func (v *BaseParseTreeVisitor) Visit(tree ParseTree) interface{} { return tree.Accept(v) }
func (v *BaseParseTreeVisitor) VisitChildren(_ RuleNode) interface{} { return nil }
func (v *BaseParseTreeVisitor) VisitTerminal(_ TerminalNode) interface{} { return nil }
func (v *BaseParseTreeVisitor) VisitErrorNode(_ ErrorNode) interface{} { return nil }
// TODO
// TODO: Implement this?
//func (this ParseTreeVisitor) Visit(ctx) {
// if (Utils.isArray(ctx)) {
// self := this
@ -101,15 +95,14 @@ type BaseParseTreeListener struct{}
var _ ParseTreeListener = &BaseParseTreeListener{}
func (l *BaseParseTreeListener) VisitTerminal(node TerminalNode) {}
func (l *BaseParseTreeListener) VisitErrorNode(node ErrorNode) {}
func (l *BaseParseTreeListener) EnterEveryRule(ctx ParserRuleContext) {}
func (l *BaseParseTreeListener) ExitEveryRule(ctx ParserRuleContext) {}
func (l *BaseParseTreeListener) VisitTerminal(_ TerminalNode) {}
func (l *BaseParseTreeListener) VisitErrorNode(_ ErrorNode) {}
func (l *BaseParseTreeListener) EnterEveryRule(_ ParserRuleContext) {}
func (l *BaseParseTreeListener) ExitEveryRule(_ ParserRuleContext) {}
type TerminalNodeImpl struct {
parentCtx RuleContext
symbol Token
symbol Token
}
var _ TerminalNode = &TerminalNodeImpl{}
@ -123,7 +116,7 @@ func NewTerminalNodeImpl(symbol Token) *TerminalNodeImpl {
return tn
}
func (t *TerminalNodeImpl) GetChild(i int) Tree {
func (t *TerminalNodeImpl) GetChild(_ int) Tree {
return nil
}
@ -131,7 +124,7 @@ func (t *TerminalNodeImpl) GetChildren() []Tree {
return nil
}
func (t *TerminalNodeImpl) SetChildren(tree []Tree) {
func (t *TerminalNodeImpl) SetChildren(_ []Tree) {
panic("Cannot set children on terminal node")
}
@ -151,7 +144,7 @@ func (t *TerminalNodeImpl) GetPayload() interface{} {
return t.symbol
}
func (t *TerminalNodeImpl) GetSourceInterval() *Interval {
func (t *TerminalNodeImpl) GetSourceInterval() Interval {
if t.symbol == nil {
return TreeInvalidInterval
}
@ -179,7 +172,7 @@ func (t *TerminalNodeImpl) String() string {
return t.symbol.GetText()
}
func (t *TerminalNodeImpl) ToStringTree(s []string, r Recognizer) string {
func (t *TerminalNodeImpl) ToStringTree(_ []string, _ Recognizer) string {
return t.String()
}
@ -214,10 +207,9 @@ func NewParseTreeWalker() *ParseTreeWalker {
return new(ParseTreeWalker)
}
// Performs a walk on the given parse tree starting at the root and going down recursively
// with depth-first search. On each node, EnterRule is called before
// recursively walking down into child nodes, then
// ExitRule is called after the recursive call to wind up.
// Walk performs a walk on the given parse tree starting at the root and going down recursively
// with depth-first search. On each node, [EnterRule] is called before
// recursively walking down into child nodes, then [ExitRule] is called after the recursive call to wind up.
func (p *ParseTreeWalker) Walk(listener ParseTreeListener, t Tree) {
switch tt := t.(type) {
case ErrorNode:
@ -234,7 +226,7 @@ func (p *ParseTreeWalker) Walk(listener ParseTreeListener, t Tree) {
}
}
// Enters a grammar rule by first triggering the generic event {@link ParseTreeListener//EnterEveryRule}
// EnterRule enters a grammar rule by first triggering the generic event [ParseTreeListener].[EnterEveryRule]
// then by triggering the event specific to the given parse tree node
func (p *ParseTreeWalker) EnterRule(listener ParseTreeListener, r RuleNode) {
ctx := r.GetRuleContext().(ParserRuleContext)
@ -242,12 +234,71 @@ func (p *ParseTreeWalker) EnterRule(listener ParseTreeListener, r RuleNode) {
ctx.EnterRule(listener)
}
// Exits a grammar rule by first triggering the event specific to the given parse tree node
// then by triggering the generic event {@link ParseTreeListener//ExitEveryRule}
// ExitRule exits a grammar rule by first triggering the event specific to the given parse tree node
// then by triggering the generic event [ParseTreeListener].ExitEveryRule
func (p *ParseTreeWalker) ExitRule(listener ParseTreeListener, r RuleNode) {
ctx := r.GetRuleContext().(ParserRuleContext)
ctx.ExitRule(listener)
listener.ExitEveryRule(ctx)
}
//goland:noinspection GoUnusedGlobalVariable
var ParseTreeWalkerDefault = NewParseTreeWalker()
type IterativeParseTreeWalker struct {
*ParseTreeWalker
}
//goland:noinspection GoUnusedExportedFunction
func NewIterativeParseTreeWalker() *IterativeParseTreeWalker {
return new(IterativeParseTreeWalker)
}
func (i *IterativeParseTreeWalker) Walk(listener ParseTreeListener, t Tree) {
var stack []Tree
var indexStack []int
currentNode := t
currentIndex := 0
for currentNode != nil {
// pre-order visit
switch tt := currentNode.(type) {
case ErrorNode:
listener.VisitErrorNode(tt)
case TerminalNode:
listener.VisitTerminal(tt)
default:
i.EnterRule(listener, currentNode.(RuleNode))
}
// Move down to first child, if exists
if currentNode.GetChildCount() > 0 {
stack = append(stack, currentNode)
indexStack = append(indexStack, currentIndex)
currentIndex = 0
currentNode = currentNode.GetChild(0)
continue
}
for {
// post-order visit
if ruleNode, ok := currentNode.(RuleNode); ok {
i.ExitRule(listener, ruleNode)
}
// No parent, so no siblings
if len(stack) == 0 {
currentNode = nil
currentIndex = 0
break
}
// Move to next sibling if possible
currentIndex++
if stack[len(stack)-1].GetChildCount() > currentIndex {
currentNode = stack[len(stack)-1].GetChild(currentIndex)
break
}
// No next, sibling, so move up
currentNode, stack = stack[len(stack)-1], stack[:len(stack)-1]
currentIndex, indexStack = indexStack[len(indexStack)-1], indexStack[:len(indexStack)-1]
}
}
}

View File

@ -8,10 +8,8 @@ import "fmt"
/** A set of utility routines useful for all kinds of ANTLR trees. */
// Print out a whole tree in LISP form. {@link //getNodeText} is used on the
//
// node payloads to get the text for the nodes. Detect
// parse trees and extract data appropriately.
// TreesStringTree prints out a whole tree in LISP form. [getNodeText] is used on the
// node payloads to get the text for the nodes. Detects parse trees and extracts data appropriately.
func TreesStringTree(tree Tree, ruleNames []string, recog Recognizer) string {
if recog != nil {
@ -32,7 +30,7 @@ func TreesStringTree(tree Tree, ruleNames []string, recog Recognizer) string {
}
for i := 1; i < c; i++ {
s = TreesStringTree(tree.GetChild(i), ruleNames, nil)
res += (" " + s)
res += " " + s
}
res += ")"
return res
@ -62,7 +60,7 @@ func TreesGetNodeText(t Tree, ruleNames []string, recog Parser) string {
}
}
// no recog for rule names
// no recognition for rule names
payload := t.GetPayload()
if p2, ok := payload.(Token); ok {
return p2.GetText()
@ -71,7 +69,9 @@ func TreesGetNodeText(t Tree, ruleNames []string, recog Parser) string {
return fmt.Sprint(t.GetPayload())
}
// Return ordered list of all children of this node
// TreesGetChildren returns am ordered list of all children of this node
//
//goland:noinspection GoUnusedExportedFunction
func TreesGetChildren(t Tree) []Tree {
list := make([]Tree, 0)
for i := 0; i < t.GetChildCount(); i++ {
@ -80,9 +80,10 @@ func TreesGetChildren(t Tree) []Tree {
return list
}
// Return a list of all ancestors of this node. The first node of
// TreesgetAncestors returns a list of all ancestors of this node. The first node of list is the root
// and the last node is the parent of this node.
//
// list is the root and the last is the parent of this node.
//goland:noinspection GoUnusedExportedFunction
func TreesgetAncestors(t Tree) []Tree {
ancestors := make([]Tree, 0)
t = t.GetParent()
@ -94,10 +95,12 @@ func TreesgetAncestors(t Tree) []Tree {
return ancestors
}
//goland:noinspection GoUnusedExportedFunction
func TreesFindAllTokenNodes(t ParseTree, ttype int) []ParseTree {
return TreesfindAllNodes(t, ttype, true)
}
//goland:noinspection GoUnusedExportedFunction
func TreesfindAllRuleNodes(t ParseTree, ruleIndex int) []ParseTree {
return TreesfindAllNodes(t, ruleIndex, false)
}
@ -129,6 +132,7 @@ func treesFindAllNodes(t ParseTree, index int, findTokens bool, nodes *[]ParseTr
}
}
//goland:noinspection GoUnusedExportedFunction
func TreesDescendants(t ParseTree) []ParseTree {
nodes := []ParseTree{t}
for i := 0; i < t.GetChildCount(); i++ {

View File

@ -9,8 +9,10 @@ import (
"errors"
"fmt"
"math/bits"
"os"
"strconv"
"strings"
"syscall"
)
func intMin(a, b int) int {
@ -31,7 +33,7 @@ func intMax(a, b int) int {
type IntStack []int
var ErrEmptyStack = errors.New("Stack is empty")
var ErrEmptyStack = errors.New("stack is empty")
func (s *IntStack) Pop() (int, error) {
l := len(*s) - 1
@ -47,33 +49,13 @@ func (s *IntStack) Push(e int) {
*s = append(*s, e)
}
type comparable interface {
Equals(other Collectable[any]) bool
}
func standardEqualsFunction(a Collectable[any], b Collectable[any]) bool {
return a.Equals(b)
}
func standardHashFunction(a interface{}) int {
if h, ok := a.(hasher); ok {
return h.Hash()
}
panic("Not Hasher")
}
type hasher interface {
Hash() int
}
const bitsPerWord = 64
func indexForBit(bit int) int {
return bit / bitsPerWord
}
//goland:noinspection GoUnusedExportedFunction,GoUnusedFunction
func wordForBit(data []uint64, bit int) uint64 {
idx := indexForBit(bit)
if idx >= len(data) {
@ -94,6 +76,8 @@ type BitSet struct {
data []uint64
}
// NewBitSet creates a new bitwise set
// TODO: See if we can replace with the standard library's BitSet
func NewBitSet() *BitSet {
return &BitSet{}
}
@ -123,7 +107,7 @@ func (b *BitSet) or(set *BitSet) {
setLen := set.minLen()
maxLen := intMax(bLen, setLen)
if maxLen > len(b.data) {
// Increase the size of len(b.data) to repesent the bits in both sets.
// Increase the size of len(b.data) to represent the bits in both sets.
data := make([]uint64, maxLen)
copy(data, b.data)
b.data = data
@ -246,37 +230,6 @@ func (a *AltDict) values() []interface{} {
return vs
}
type DoubleDict struct {
data map[int]map[int]interface{}
}
func NewDoubleDict() *DoubleDict {
dd := new(DoubleDict)
dd.data = make(map[int]map[int]interface{})
return dd
}
func (d *DoubleDict) Get(a, b int) interface{} {
data := d.data[a]
if data == nil {
return nil
}
return data[b]
}
func (d *DoubleDict) set(a, b int, o interface{}) {
data := d.data[a]
if data == nil {
data = make(map[int]interface{})
d.data[a] = data
}
data[b] = o
}
func EscapeWhitespace(s string, escapeSpaces bool) string {
s = strings.Replace(s, "\t", "\\t", -1)
@ -288,6 +241,7 @@ func EscapeWhitespace(s string, escapeSpaces bool) string {
return s
}
//goland:noinspection GoUnusedExportedFunction
func TerminalNodeToStringArray(sa []TerminalNode) []string {
st := make([]string, len(sa))
@ -298,6 +252,7 @@ func TerminalNodeToStringArray(sa []TerminalNode) []string {
return st
}
//goland:noinspection GoUnusedExportedFunction
func PrintArrayJavaStyle(sa []string) string {
var buffer bytes.Buffer
@ -350,3 +305,24 @@ func murmurFinish(h int, numberOfWords int) int {
return int(hash)
}
func isDirectory(dir string) (bool, error) {
fileInfo, err := os.Stat(dir)
if err != nil {
switch {
case errors.Is(err, syscall.ENOENT):
// The given directory does not exist, so we will try to create it
//
err = os.MkdirAll(dir, 0755)
if err != nil {
return false, err
}
return true, nil
case err != nil:
return false, err
default:
}
}
return fileInfo.IsDir(), err
}

View File

@ -1,4 +1,4 @@
# Exponential Backoff [![GoDoc][godoc image]][godoc] [![Build Status][travis image]][travis] [![Coverage Status][coveralls image]][coveralls]
# Exponential Backoff [![GoDoc][godoc image]][godoc] [![Coverage Status][coveralls image]][coveralls]
This is a Go port of the exponential backoff algorithm from [Google's HTTP Client Library for Java][google-http-java-client].
@ -21,8 +21,6 @@ Use https://pkg.go.dev/github.com/cenkalti/backoff/v4 to view the documentation.
[godoc]: https://pkg.go.dev/github.com/cenkalti/backoff/v4
[godoc image]: https://godoc.org/github.com/cenkalti/backoff?status.png
[travis]: https://travis-ci.org/cenkalti/backoff
[travis image]: https://travis-ci.org/cenkalti/backoff.png?branch=master
[coveralls]: https://coveralls.io/github/cenkalti/backoff?branch=master
[coveralls image]: https://coveralls.io/repos/github/cenkalti/backoff/badge.svg?branch=master

View File

@ -71,6 +71,9 @@ type Clock interface {
Now() time.Time
}
// ExponentialBackOffOpts is a function type used to configure ExponentialBackOff options.
type ExponentialBackOffOpts func(*ExponentialBackOff)
// Default values for ExponentialBackOff.
const (
DefaultInitialInterval = 500 * time.Millisecond
@ -81,7 +84,7 @@ const (
)
// NewExponentialBackOff creates an instance of ExponentialBackOff using default values.
func NewExponentialBackOff() *ExponentialBackOff {
func NewExponentialBackOff(opts ...ExponentialBackOffOpts) *ExponentialBackOff {
b := &ExponentialBackOff{
InitialInterval: DefaultInitialInterval,
RandomizationFactor: DefaultRandomizationFactor,
@ -91,10 +94,62 @@ func NewExponentialBackOff() *ExponentialBackOff {
Stop: Stop,
Clock: SystemClock,
}
for _, fn := range opts {
fn(b)
}
b.Reset()
return b
}
// WithInitialInterval sets the initial interval between retries.
func WithInitialInterval(duration time.Duration) ExponentialBackOffOpts {
return func(ebo *ExponentialBackOff) {
ebo.InitialInterval = duration
}
}
// WithRandomizationFactor sets the randomization factor to add jitter to intervals.
func WithRandomizationFactor(randomizationFactor float64) ExponentialBackOffOpts {
return func(ebo *ExponentialBackOff) {
ebo.RandomizationFactor = randomizationFactor
}
}
// WithMultiplier sets the multiplier for increasing the interval after each retry.
func WithMultiplier(multiplier float64) ExponentialBackOffOpts {
return func(ebo *ExponentialBackOff) {
ebo.Multiplier = multiplier
}
}
// WithMaxInterval sets the maximum interval between retries.
func WithMaxInterval(duration time.Duration) ExponentialBackOffOpts {
return func(ebo *ExponentialBackOff) {
ebo.MaxInterval = duration
}
}
// WithMaxElapsedTime sets the maximum total time for retries.
func WithMaxElapsedTime(duration time.Duration) ExponentialBackOffOpts {
return func(ebo *ExponentialBackOff) {
ebo.MaxElapsedTime = duration
}
}
// WithRetryStopDuration sets the duration after which retries should stop.
func WithRetryStopDuration(duration time.Duration) ExponentialBackOffOpts {
return func(ebo *ExponentialBackOff) {
ebo.Stop = duration
}
}
// WithClockProvider sets the clock used to measure time.
func WithClockProvider(clock Clock) ExponentialBackOffOpts {
return func(ebo *ExponentialBackOff) {
ebo.Clock = clock
}
}
type systemClock struct{}
func (t systemClock) Now() time.Time {

View File

@ -1,6 +0,0 @@
language: go
go:
- 1.6
- 1.7
- 1.8

View File

@ -1,7 +1,7 @@
.PHONY: ci generate clean
ci: clean generate
go test -v ./...
go test -race -v ./...
generate:
go generate .

View File

@ -7,8 +7,8 @@ http.Handlers.
Doing this requires non-trivial wrapping of the http.ResponseWriter interface,
which is also exposed for users interested in a more low-level API.
[![GoDoc](https://godoc.org/github.com/felixge/httpsnoop?status.svg)](https://godoc.org/github.com/felixge/httpsnoop)
[![Build Status](https://travis-ci.org/felixge/httpsnoop.svg?branch=master)](https://travis-ci.org/felixge/httpsnoop)
[![Go Reference](https://pkg.go.dev/badge/github.com/felixge/httpsnoop.svg)](https://pkg.go.dev/github.com/felixge/httpsnoop)
[![Build Status](https://github.com/felixge/httpsnoop/actions/workflows/main.yaml/badge.svg)](https://github.com/felixge/httpsnoop/actions/workflows/main.yaml)
## Usage Example

View File

@ -52,7 +52,7 @@ func (m *Metrics) CaptureMetrics(w http.ResponseWriter, fn func(http.ResponseWri
return func(code int) {
next(code)
if !headerWritten {
if !(code >= 100 && code <= 199) && !headerWritten {
m.Code = code
headerWritten = true
}

View File

@ -1,5 +1,5 @@
// +build go1.8
// Code generated by "httpsnoop/codegen"; DO NOT EDIT
// Code generated by "httpsnoop/codegen"; DO NOT EDIT.
package httpsnoop

View File

@ -1,5 +1,5 @@
// +build !go1.8
// Code generated by "httpsnoop/codegen"; DO NOT EDIT
// Code generated by "httpsnoop/codegen"; DO NOT EDIT.
package httpsnoop

12
vendor/github.com/fxamacker/cbor/v2/.gitignore generated vendored Normal file
View File

@ -0,0 +1,12 @@
# Binaries for programs and plugins
*.exe
*.exe~
*.dll
*.so
*.dylib
# Test binary, build with `go test -c`
*.test
# Output of the go coverage tool, specifically when used with LiteIDE
*.out

104
vendor/github.com/fxamacker/cbor/v2/.golangci.yml generated vendored Normal file
View File

@ -0,0 +1,104 @@
# Do not delete linter settings. Linters like gocritic can be enabled on the command line.
linters-settings:
depguard:
rules:
prevent_unmaintained_packages:
list-mode: strict
files:
- $all
- "!$test"
allow:
- $gostd
- github.com/x448/float16
deny:
- pkg: io/ioutil
desc: "replaced by io and os packages since Go 1.16: https://tip.golang.org/doc/go1.16#ioutil"
dupl:
threshold: 100
funlen:
lines: 100
statements: 50
goconst:
ignore-tests: true
min-len: 2
min-occurrences: 3
gocritic:
enabled-tags:
- diagnostic
- experimental
- opinionated
- performance
- style
disabled-checks:
- commentedOutCode
- dupImport # https://github.com/go-critic/go-critic/issues/845
- ifElseChain
- octalLiteral
- paramTypeCombine
- whyNoLint
gofmt:
simplify: false
goimports:
local-prefixes: github.com/fxamacker/cbor
golint:
min-confidence: 0
govet:
check-shadowing: true
lll:
line-length: 140
maligned:
suggest-new: true
misspell:
locale: US
staticcheck:
checks: ["all"]
linters:
disable-all: true
enable:
- asciicheck
- bidichk
- depguard
- errcheck
- exportloopref
- goconst
- gocritic
- gocyclo
- gofmt
- goimports
- goprintffuncname
- gosec
- gosimple
- govet
- ineffassign
- misspell
- nilerr
- revive
- staticcheck
- stylecheck
- typecheck
- unconvert
- unused
issues:
# max-issues-per-linter default is 50. Set to 0 to disable limit.
max-issues-per-linter: 0
# max-same-issues default is 3. Set to 0 to disable limit.
max-same-issues: 0
exclude-rules:
- path: decode.go
text: "string ` overflows ` has (\\d+) occurrences, make it a constant"
- path: decode.go
text: "string ` \\(range is \\[` has (\\d+) occurrences, make it a constant"
- path: decode.go
text: "string `, ` has (\\d+) occurrences, make it a constant"
- path: decode.go
text: "string ` overflows Go's int64` has (\\d+) occurrences, make it a constant"
- path: decode.go
text: "string `\\]\\)` has (\\d+) occurrences, make it a constant"
- path: valid.go
text: "string ` for type ` has (\\d+) occurrences, make it a constant"
- path: valid.go
text: "string `cbor: ` has (\\d+) occurrences, make it a constant"

133
vendor/github.com/fxamacker/cbor/v2/CODE_OF_CONDUCT.md generated vendored Normal file
View File

@ -0,0 +1,133 @@
# Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the overall
community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or advances of
any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email address,
without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
faye.github@gmail.com.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series of
actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within the
community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.1, available at
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
Community Impact Guidelines were inspired by
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
For answers to common questions about this code of conduct, see the FAQ at
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
[https://www.contributor-covenant.org/translations][translations].
[homepage]: https://www.contributor-covenant.org
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
[Mozilla CoC]: https://github.com/mozilla/diversity
[FAQ]: https://www.contributor-covenant.org/faq
[translations]: https://www.contributor-covenant.org/translations

41
vendor/github.com/fxamacker/cbor/v2/CONTRIBUTING.md generated vendored Normal file
View File

@ -0,0 +1,41 @@
# How to contribute
You can contribute by using the library, opening issues, or opening pull requests.
## Bug reports and security vulnerabilities
Most issues are tracked publicly on [GitHub](https://github.com/fxamacker/cbor/issues).
To report security vulnerabilities, please email faye.github@gmail.com and allow time for the problem to be resolved before disclosing it to the public. For more info, see [Security Policy](https://github.com/fxamacker/cbor#security-policy).
Please do not send data that might contain personally identifiable information, even if you think you have permission. That type of support requires payment and a signed contract where I'm indemnified, held harmless, and defended by you for any data you send to me.
## Pull requests
Please [create an issue](https://github.com/fxamacker/cbor/issues/new/choose) before you begin work on a PR. The improvement may have already been considered, etc.
Pull requests have signing requirements and must not be anonymous. Exceptions are usually made for docs and CI scripts.
See the [Pull Request Template](https://github.com/fxamacker/cbor/blob/master/.github/pull_request_template.md) for details.
Pull requests have a greater chance of being approved if:
- it does not reduce speed, increase memory use, reduce security, etc. for people not using the new option or feature.
- it has > 97% code coverage.
## Describe your issue
Clearly describe the issue:
* If it's a bug, please provide: **version of this library** and **Go** (`go version`), **unmodified error message**, and describe **how to reproduce it**. Also state **what you expected to happen** instead of the error.
* If you propose a change or addition, try to give an example how the improved code could look like or how to use it.
* If you found a compilation error, please confirm you're using a supported version of Go. If you are, then provide the output of `go version` first, followed by the complete error message.
## Please don't
Please don't send data containing personally identifiable information, even if you think you have permission. That type of support requires payment and a contract where I'm indemnified, held harmless, and defended for any data you send to me.
Please don't send CBOR data larger than 1024 bytes by email. If you want to send crash-producing CBOR data > 1024 bytes by email, please get my permission before sending it to me.
## Credits
- This guide used nlohmann/json contribution guidelines for inspiration as suggested in issue #22.
- Special thanks to @lukseven for pointing out the contribution guidelines didn't mention signing requirements.

21
vendor/github.com/fxamacker/cbor/v2/LICENSE generated vendored Normal file
View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2019-present Faye Amacker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

691
vendor/github.com/fxamacker/cbor/v2/README.md generated vendored Normal file
View File

@ -0,0 +1,691 @@
# CBOR Codec in Go
<!-- [![](https://github.com/fxamacker/images/raw/master/cbor/v2.5.0/fxamacker_cbor_banner.png)](#cbor-library-in-go) -->
[fxamacker/cbor](https://github.com/fxamacker/cbor) is a library for encoding and decoding [CBOR](https://www.rfc-editor.org/info/std94) and [CBOR Sequences](https://www.rfc-editor.org/rfc/rfc8742.html).
CBOR is a [trusted alternative](https://www.rfc-editor.org/rfc/rfc8949.html#name-comparison-of-other-binary-) to JSON, MessagePack, Protocol Buffers, etc.&nbsp; CBOR is an Internet&nbsp;Standard defined by [IETF&nbsp;STD&nbsp;94 (RFC&nbsp;8949)](https://www.rfc-editor.org/info/std94) and is designed to be relevant for decades.
`fxamacker/cbor` is used in projects by Arm Ltd., Cisco, EdgeX&nbsp;Foundry, Flow Foundation, Fraunhofer&#8209;AISEC, Kubernetes, Let's&nbsp;Encrypt (ISRG), Linux&nbsp;Foundation, Microsoft, Mozilla, Oasis&nbsp;Protocol, Tailscale, Teleport, [etc](https://github.com/fxamacker/cbor#who-uses-fxamackercbor).
See [Quick&nbsp;Start](#quick-start) and [Releases](https://github.com/fxamacker/cbor/releases/). 🆕 `UnmarshalFirst` and `DiagnoseFirst` can decode CBOR Sequences. `cbor.MarshalToBuffer()` and `UserBufferEncMode` accepts user-specified buffer.
## fxamacker/cbor
[![](https://github.com/fxamacker/cbor/workflows/ci/badge.svg)](https://github.com/fxamacker/cbor/actions?query=workflow%3Aci)
[![](https://github.com/fxamacker/cbor/workflows/cover%20%E2%89%A596%25/badge.svg)](https://github.com/fxamacker/cbor/actions?query=workflow%3A%22cover+%E2%89%A596%25%22)
[![CodeQL](https://github.com/fxamacker/cbor/actions/workflows/codeql-analysis.yml/badge.svg)](https://github.com/fxamacker/cbor/actions/workflows/codeql-analysis.yml)
[![](https://img.shields.io/badge/fuzzing-passing-44c010)](#fuzzing-and-code-coverage)
[![Go Report Card](https://goreportcard.com/badge/github.com/fxamacker/cbor)](https://goreportcard.com/report/github.com/fxamacker/cbor)
`fxamacker/cbor` is a CBOR codec in full conformance with [IETF STD&nbsp;94 (RFC&nbsp;8949)](https://www.rfc-editor.org/info/std94). It also supports CBOR Sequences ([RFC&nbsp;8742](https://www.rfc-editor.org/rfc/rfc8742.html)) and Extended Diagnostic Notation ([Appendix G of RFC&nbsp;8610](https://www.rfc-editor.org/rfc/rfc8610.html#appendix-G)).
Features include full support for CBOR tags, [Core Deterministic Encoding](https://www.rfc-editor.org/rfc/rfc8949.html#name-core-deterministic-encoding), duplicate map key detection, etc.
Design balances trade-offs between security, speed, concurrency, encoded data size, usability, etc.
<details><summary>Highlights</summary><p/>
__🚀&nbsp; Speed__
Encoding and decoding is fast without using Go's `unsafe` package. Slower settings are opt-in. Default limits allow very fast and memory efficient rejection of malformed CBOR data.
__🔒&nbsp; Security__
Decoder has configurable limits that defend against malicious inputs. Duplicate map key detection is supported. By contrast, `encoding/gob` is [not designed to be hardened against adversarial inputs](https://pkg.go.dev/encoding/gob#hdr-Security).
Codec passed multiple confidential security assessments in 2022. No vulnerabilities found in subset of codec in a [nonconfidential security assessment](https://github.com/veraison/go-cose/blob/v1.0.0-rc.1/reports/NCC_Microsoft-go-cose-Report_2022-05-26_v1.0.pdf) prepared by NCC&nbsp;Group for Microsoft&nbsp;Corporation.
__🗜&nbsp; Data Size__
Struct tags (`toarray`, `keyasint`, `omitempty`) automatically reduce size of encoded structs. Encoding optionally shrinks float64→32→16 when values fit.
__:jigsaw:&nbsp; Usability__
API is mostly same as `encoding/json` plus interfaces that simplify concurrency for CBOR options. Encoding and decoding modes can be created at startup and reused by any goroutines.
Presets include Core Deterministic Encoding, Preferred Serialization, CTAP2 Canonical CBOR, etc.
__📆&nbsp; Extensibility__
Features include CBOR [extension points](https://www.rfc-editor.org/rfc/rfc8949.html#section-7.1) (e.g. CBOR tags) and extensive settings. API has interfaces that allow users to create custom encoding and decoding without modifying this library.
<hr/>
</details>
### Secure Decoding with Configurable Settings
`fxamacker/cbor` has configurable limits, etc. that defend against malicious CBOR data.
By contrast, `encoding/gob` is [not designed to be hardened against adversarial inputs](https://pkg.go.dev/encoding/gob#hdr-Security).
<details><summary>Example decoding with encoding/gob 💥 fatal error (out of memory)</summary><p/>
```Go
// Example of encoding/gob having "fatal error: runtime: out of memory"
// while decoding 181 bytes.
package main
import (
"bytes"
"encoding/gob"
"encoding/hex"
"fmt"
)
// Example data is from https://github.com/golang/go/issues/24446
// (shortened to 181 bytes).
const data = "4dffb503010102303001ff30000109010130010800010130010800010130" +
"01ffb80001014a01ffb60001014b01ff860001013001ff860001013001ff" +
"860001013001ff860001013001ffb80000001eff850401010e3030303030" +
"30303030303030303001ff3000010c0104000016ffb70201010830303030" +
"3030303001ff3000010c000030ffb6040405fcff00303030303030303030" +
"303030303030303030303030303030303030303030303030303030303030" +
"30"
type X struct {
J *X
K map[string]int
}
func main() {
raw, _ := hex.DecodeString(data)
decoder := gob.NewDecoder(bytes.NewReader(raw))
var x X
decoder.Decode(&x) // fatal error: runtime: out of memory
fmt.Println("Decoding finished.")
}
```
<hr/>
</details>
`fxamacker/cbor` is fast at rejecting malformed CBOR data. E.g. attempts to
decode 10 bytes of malicious CBOR data to `[]byte` (with default settings):
| Codec | Speed (ns/op) | Memory | Allocs |
| :---- | ------------: | -----: | -----: |
| fxamacker/cbor 2.5.0 | 44 ± 5% | 32 B/op | 2 allocs/op |
| ugorji/go 1.2.11 | 5353261 ± 4% | 67111321 B/op | 13 allocs/op |
<details><summary>Benchmark details</summary><p/>
Latest comparison used:
- Input: `[]byte{0x9B, 0x00, 0x00, 0x42, 0xFA, 0x42, 0xFA, 0x42, 0xFA, 0x42}`
- go1.19.10, linux/amd64, i5-13600K (disabled all e-cores, DDR4 @2933)
- go test -bench=. -benchmem -count=20
#### Prior comparisons
| Codec | Speed (ns/op) | Memory | Allocs |
| :---- | ------------: | -----: | -----: |
| fxamacker/cbor 2.5.0-beta2 | 44.33 ± 2% | 32 B/op | 2 allocs/op |
| fxamacker/cbor 0.1.0 - 2.4.0 | ~44.68 ± 6% | 32 B/op | 2 allocs/op |
| ugorji/go 1.2.10 | 5524792.50 ± 3% | 67110491 B/op | 12 allocs/op |
| ugorji/go 1.1.0 - 1.2.6 | 💥 runtime: | out of memory: | cannot allocate |
- Input: `[]byte{0x9B, 0x00, 0x00, 0x42, 0xFA, 0x42, 0xFA, 0x42, 0xFA, 0x42}`
- go1.19.6, linux/amd64, i5-13600K (DDR4)
- go test -bench=. -benchmem -count=20
<hr/>
</details>
### Smaller Encodings with Struct Tags
Struct tags (`toarray`, `keyasint`, `omitempty`) reduce encoded size of structs.
<details><summary>Example encoding 3-level nested Go struct to 1 byte CBOR</summary><p/>
https://go.dev/play/p/YxwvfPdFQG2
```Go
// Example encoding nested struct (with omitempty tag)
// - encoding/json: 18 byte JSON
// - fxamacker/cbor: 1 byte CBOR
package main
import (
"encoding/hex"
"encoding/json"
"fmt"
"github.com/fxamacker/cbor/v2"
)
type GrandChild struct {
Quux int `json:",omitempty"`
}
type Child struct {
Baz int `json:",omitempty"`
Qux GrandChild `json:",omitempty"`
}
type Parent struct {
Foo Child `json:",omitempty"`
Bar int `json:",omitempty"`
}
func cb() {
results, _ := cbor.Marshal(Parent{})
fmt.Println("hex(CBOR): " + hex.EncodeToString(results))
text, _ := cbor.Diagnose(results) // Diagnostic Notation
fmt.Println("DN: " + text)
}
func js() {
results, _ := json.Marshal(Parent{})
fmt.Println("hex(JSON): " + hex.EncodeToString(results))
text := string(results) // JSON
fmt.Println("JSON: " + text)
}
func main() {
cb()
fmt.Println("-------------")
js()
}
```
Output (DN is Diagnostic Notation):
```
hex(CBOR): a0
DN: {}
-------------
hex(JSON): 7b22466f6f223a7b22517578223a7b7d7d7d
JSON: {"Foo":{"Qux":{}}}
```
<hr/>
</details>
Example using different struct tags together:
![alt text](https://github.com/fxamacker/images/raw/master/cbor/v2.3.0/cbor_struct_tags_api.svg?sanitize=1 "CBOR API and Go Struct Tags")
API is mostly same as `encoding/json`, plus interfaces that simplify concurrency for CBOR options.
## Quick Start
__Install__: `go get github.com/fxamacker/cbor/v2` and `import "github.com/fxamacker/cbor/v2"`.
### Key Points
This library can encode and decode CBOR (RFC 8949) and CBOR Sequences (RFC 8742).
- __CBOR data item__ is a single piece of CBOR data and its structure may contain 0 or more nested data items.
- __CBOR sequence__ is a concatenation of 0 or more encoded CBOR data items.
Configurable limits and options can be used to balance trade-offs.
- Encoding and decoding modes are created from options (settings).
- Modes can be created at startup and reused.
- Modes are safe for concurrent use.
### Default Mode
Package level functions only use this library's default settings.
They provide the "default mode" of encoding and decoding.
```go
// API matches encoding/json for Marshal, Unmarshal, Encode, Decode, etc.
b, err = cbor.Marshal(v) // encode v to []byte b
err = cbor.Unmarshal(b, &v) // decode []byte b to v
decoder = cbor.NewDecoder(r) // create decoder with io.Reader r
err = decoder.Decode(&v) // decode a CBOR data item to v
// v2.7.0 added MarshalToBuffer() and UserBufferEncMode interface.
err = cbor.MarshalToBuffer(v, b) // encode v to b instead of using built-in buf pool.
// v2.5.0 added new functions that return remaining bytes.
// UnmarshalFirst decodes first CBOR data item and returns remaining bytes.
rest, err = cbor.UnmarshalFirst(b, &v) // decode []byte b to v
// DiagnoseFirst translates first CBOR data item to text and returns remaining bytes.
text, rest, err = cbor.DiagnoseFirst(b) // decode []byte b to Diagnostic Notation text
// NOTE: Unmarshal returns ExtraneousDataError if there are remaining bytes,
// but new funcs UnmarshalFirst and DiagnoseFirst do not.
```
__IMPORTANT__: 👉 CBOR settings allow trade-offs between speed, security, encoding size, etc.
- Different CBOR libraries may use different default settings.
- CBOR-based formats or protocols usually require specific settings.
For example, WebAuthn uses "CTAP2 Canonical CBOR" which is available as a preset.
### Presets
Presets can be used as-is or as a starting point for custom settings.
```go
// EncOptions is a struct of encoder settings.
func CoreDetEncOptions() EncOptions // RFC 8949 Core Deterministic Encoding
func PreferredUnsortedEncOptions() EncOptions // RFC 8949 Preferred Serialization
func CanonicalEncOptions() EncOptions // RFC 7049 Canonical CBOR
func CTAP2EncOptions() EncOptions // FIDO2 CTAP2 Canonical CBOR
```
Presets are used to create custom modes.
### Custom Modes
Modes are created from settings. Once created, modes have immutable settings.
💡 Create the mode at startup and reuse it. It is safe for concurrent use.
```Go
// Create encoding mode.
opts := cbor.CoreDetEncOptions() // use preset options as a starting point
opts.Time = cbor.TimeUnix // change any settings if needed
em, err := opts.EncMode() // create an immutable encoding mode
// Reuse the encoding mode. It is safe for concurrent use.
// API matches encoding/json.
b, err := em.Marshal(v) // encode v to []byte b
encoder := em.NewEncoder(w) // create encoder with io.Writer w
err := encoder.Encode(v) // encode v to io.Writer w
```
Default mode and custom modes automatically apply struct tags.
### User Specified Buffer for Encoding (v2.7.0)
`UserBufferEncMode` interface extends `EncMode` interface to add `MarshalToBuffer()`. It accepts a user-specified buffer instead of using built-in buffer pool.
```Go
em, err := myEncOptions.UserBufferEncMode() // create UserBufferEncMode mode
var buf bytes.Buffer
err = em.MarshalToBuffer(v, &buf) // encode v to provided buf
```
### Struct Tags
Struct tags (`toarray`, `keyasint`, `omitempty`) reduce encoded size of structs.
<details><summary>Example encoding 3-level nested Go struct to 1 byte CBOR</summary><p/>
https://go.dev/play/p/YxwvfPdFQG2
```Go
// Example encoding nested struct (with omitempty tag)
// - encoding/json: 18 byte JSON
// - fxamacker/cbor: 1 byte CBOR
package main
import (
"encoding/hex"
"encoding/json"
"fmt"
"github.com/fxamacker/cbor/v2"
)
type GrandChild struct {
Quux int `json:",omitempty"`
}
type Child struct {
Baz int `json:",omitempty"`
Qux GrandChild `json:",omitempty"`
}
type Parent struct {
Foo Child `json:",omitempty"`
Bar int `json:",omitempty"`
}
func cb() {
results, _ := cbor.Marshal(Parent{})
fmt.Println("hex(CBOR): " + hex.EncodeToString(results))
text, _ := cbor.Diagnose(results) // Diagnostic Notation
fmt.Println("DN: " + text)
}
func js() {
results, _ := json.Marshal(Parent{})
fmt.Println("hex(JSON): " + hex.EncodeToString(results))
text := string(results) // JSON
fmt.Println("JSON: " + text)
}
func main() {
cb()
fmt.Println("-------------")
js()
}
```
Output (DN is Diagnostic Notation):
```
hex(CBOR): a0
DN: {}
-------------
hex(JSON): 7b22466f6f223a7b22517578223a7b7d7d7d
JSON: {"Foo":{"Qux":{}}}
```
<hr/>
</details>
<details><summary>Example using several struct tags</summary><p/>
![alt text](https://github.com/fxamacker/images/raw/master/cbor/v2.3.0/cbor_struct_tags_api.svg?sanitize=1 "CBOR API and Go Struct Tags")
</details>
Struct tags simplify use of CBOR-based protocols that require CBOR arrays or maps with integer keys.
### CBOR Tags
CBOR tags are specified in a `TagSet`.
Custom modes can be created with a `TagSet` to handle CBOR tags.
```go
em, err := opts.EncMode() // no CBOR tags
em, err := opts.EncModeWithTags(ts) // immutable CBOR tags
em, err := opts.EncModeWithSharedTags(ts) // mutable shared CBOR tags
```
`TagSet` and modes using it are safe for concurrent use. Equivalent API is available for `DecMode`.
<details><summary>Example using TagSet and TagOptions</summary><p/>
```go
// Use signedCWT struct defined in "Decoding CWT" example.
// Create TagSet (safe for concurrency).
tags := cbor.NewTagSet()
// Register tag COSE_Sign1 18 with signedCWT type.
tags.Add(
cbor.TagOptions{EncTag: cbor.EncTagRequired, DecTag: cbor.DecTagRequired},
reflect.TypeOf(signedCWT{}),
18)
// Create DecMode with immutable tags.
dm, _ := cbor.DecOptions{}.DecModeWithTags(tags)
// Unmarshal to signedCWT with tag support.
var v signedCWT
if err := dm.Unmarshal(data, &v); err != nil {
return err
}
// Create EncMode with immutable tags.
em, _ := cbor.EncOptions{}.EncModeWithTags(tags)
// Marshal signedCWT with tag number.
if data, err := cbor.Marshal(v); err != nil {
return err
}
```
</details>
### Functions and Interfaces
<details><summary>Functions and interfaces at a glance</summary><p/>
Common functions with same API as `encoding/json`:
- `Marshal`, `Unmarshal`
- `NewEncoder`, `(*Encoder).Encode`
- `NewDecoder`, `(*Decoder).Decode`
NOTE: `Unmarshal` will return `ExtraneousDataError` if there are remaining bytes
because RFC 8949 treats CBOR data item with remaining bytes as malformed.
- 💡 Use `UnmarshalFirst` to decode first CBOR data item and return any remaining bytes.
Other useful functions:
- `Diagnose`, `DiagnoseFirst` produce human-readable [Extended Diagnostic Notation](https://www.rfc-editor.org/rfc/rfc8610.html#appendix-G) from CBOR data.
- `UnmarshalFirst` decodes first CBOR data item and return any remaining bytes.
- `Wellformed` returns true if the the CBOR data item is well-formed.
Interfaces identical or comparable to Go `encoding` packages include:
`Marshaler`, `Unmarshaler`, `BinaryMarshaler`, and `BinaryUnmarshaler`.
The `RawMessage` type can be used to delay CBOR decoding or precompute CBOR encoding.
</details>
### Security Tips
🔒 Use Go's `io.LimitReader` to limit size when decoding very large or indefinite size data.
Default limits may need to be increased for systems handling very large data (e.g. blockchains).
`DecOptions` can be used to modify default limits for `MaxArrayElements`, `MaxMapPairs`, and `MaxNestedLevels`.
## Status
v2.7.0 (June 23, 2024) adds features and improvements that help large projects (e.g. Kubernetes) use CBOR as an alternative to JSON and Protocol Buffers. Other improvements include speedups, improved memory use, bug fixes, new serialization options, etc. It passed fuzz tests (5+ billion executions) and is production quality.
For more details, see [release notes](https://github.com/fxamacker/cbor/releases).
### Prior Release
[v2.6.0](https://github.com/fxamacker/cbor/releases/tag/v2.6.0) (February 2024) adds important new features, optimizations, and bug fixes. It is especially useful to systems that need to convert data between CBOR and JSON. New options and optimizations improve handling of bignum, integers, maps, and strings.
v2.5.0 was released on Sunday, August 13, 2023 with new features and important bug fixes. It is fuzz tested and production quality after extended beta [v2.5.0-beta](https://github.com/fxamacker/cbor/releases/tag/v2.5.0-beta) (Dec 2022) -> [v2.5.0](https://github.com/fxamacker/cbor/releases/tag/v2.5.0) (Aug 2023).
__IMPORTANT__: 👉 Before upgrading from v2.4 or older release, please read the notable changes highlighted in the release notes. v2.5.0 is a large release with bug fixes to error handling for extraneous data in `Unmarshal`, etc. that should be reviewed before upgrading.
See [v2.5.0 release notes](https://github.com/fxamacker/cbor/releases/tag/v2.5.0) for list of new features, improvements, and bug fixes.
See ["Version and API Changes"](https://github.com/fxamacker/cbor#versions-and-api-changes) section for more info about version numbering, etc.
<!--
<details><summary>👉 Benchmark Comparison: v2.4.0 vs v2.5.0</summary><p/>
TODO: Update to v2.4.0 vs 2.5.0 (not beta2).
Comparison of v2.4.0 vs v2.5.0-beta2 provided by @448 (edited to fit width).
PR [#382](https://github.com/fxamacker/cbor/pull/382) returns buffer to pool in `Encode()`. It adds a bit of overhead to `Encode()` but `NewEncoder().Encode()` is a lot faster and uses less memory as shown here:
```
$ benchstat bench-v2.4.0.log bench-f9e6291.log
goos: linux
goarch: amd64
pkg: github.com/fxamacker/cbor/v2
cpu: 12th Gen Intel(R) Core(TM) i7-12700H
│ bench-v2.4.0.log │ bench-f9e6291.log │
│ sec/op │ sec/op vs base │
NewEncoderEncode/Go_bool_to_CBOR_bool-20 236.70n ± 2% 58.04n ± 1% -75.48% (p=0.000 n=10)
NewEncoderEncode/Go_uint64_to_CBOR_positive_int-20 238.00n ± 2% 63.93n ± 1% -73.14% (p=0.000 n=10)
NewEncoderEncode/Go_int64_to_CBOR_negative_int-20 238.65n ± 2% 64.88n ± 1% -72.81% (p=0.000 n=10)
NewEncoderEncode/Go_float64_to_CBOR_float-20 242.00n ± 2% 63.00n ± 1% -73.97% (p=0.000 n=10)
NewEncoderEncode/Go_[]uint8_to_CBOR_bytes-20 245.60n ± 1% 68.55n ± 1% -72.09% (p=0.000 n=10)
NewEncoderEncode/Go_string_to_CBOR_text-20 243.20n ± 3% 68.39n ± 1% -71.88% (p=0.000 n=10)
NewEncoderEncode/Go_[]int_to_CBOR_array-20 563.0n ± 2% 378.3n ± 0% -32.81% (p=0.000 n=10)
NewEncoderEncode/Go_map[string]string_to_CBOR_map-20 2.043µ ± 2% 1.906µ ± 2% -6.75% (p=0.000 n=10)
geomean 349.7n 122.7n -64.92%
│ bench-v2.4.0.log │ bench-f9e6291.log │
│ B/op │ B/op vs base │
NewEncoderEncode/Go_bool_to_CBOR_bool-20 128.0 ± 0% 0.0 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_uint64_to_CBOR_positive_int-20 128.0 ± 0% 0.0 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_int64_to_CBOR_negative_int-20 128.0 ± 0% 0.0 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_float64_to_CBOR_float-20 128.0 ± 0% 0.0 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_[]uint8_to_CBOR_bytes-20 128.0 ± 0% 0.0 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_string_to_CBOR_text-20 128.0 ± 0% 0.0 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_[]int_to_CBOR_array-20 128.0 ± 0% 0.0 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_map[string]string_to_CBOR_map-20 544.0 ± 0% 416.0 ± 0% -23.53% (p=0.000 n=10)
geomean 153.4 ? ¹ ²
¹ summaries must be >0 to compute geomean
² ratios must be >0 to compute geomean
│ bench-v2.4.0.log │ bench-f9e6291.log │
│ allocs/op │ allocs/op vs base │
NewEncoderEncode/Go_bool_to_CBOR_bool-20 2.000 ± 0% 0.000 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_uint64_to_CBOR_positive_int-20 2.000 ± 0% 0.000 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_int64_to_CBOR_negative_int-20 2.000 ± 0% 0.000 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_float64_to_CBOR_float-20 2.000 ± 0% 0.000 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_[]uint8_to_CBOR_bytes-20 2.000 ± 0% 0.000 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_string_to_CBOR_text-20 2.000 ± 0% 0.000 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_[]int_to_CBOR_array-20 2.000 ± 0% 0.000 ± 0% -100.00% (p=0.000 n=10)
NewEncoderEncode/Go_map[string]string_to_CBOR_map-20 28.00 ± 0% 26.00 ± 0% -7.14% (p=0.000 n=10)
geomean 2.782 ? ¹ ²
¹ summaries must be >0 to compute geomean
² ratios must be >0 to compute geomean
```
</details>
-->
## Who uses fxamacker/cbor
`fxamacker/cbor` is used in projects by Arm Ltd., Berlin Institute of Health at Charité, Chainlink, Cisco, Confidential Computing Consortium, ConsenSys, Dapper&nbsp;Labs, EdgeX&nbsp;Foundry, F5, FIDO Alliance, Fraunhofer&#8209;AISEC, Kubernetes, Let's Encrypt (ISRG), Linux&nbsp;Foundation, Matrix.org, Microsoft, Mozilla, National&nbsp;Cybersecurity&nbsp;Agency&nbsp;of&nbsp;France (govt), Netherlands (govt), Oasis Protocol, Smallstep, Tailscale, Taurus SA, Teleport, TIBCO, and others.
`fxamacker/cbor` passed multiple confidential security assessments. A [nonconfidential security assessment](https://github.com/veraison/go-cose/blob/v1.0.0-rc.1/reports/NCC_Microsoft-go-cose-Report_2022-05-26_v1.0.pdf) (prepared by NCC Group for Microsoft Corporation) includes a subset of fxamacker/cbor v2.4.0 in its scope.
## Standards
`fxamacker/cbor` is a CBOR codec in full conformance with [IETF STD&nbsp;94 (RFC&nbsp;8949)](https://www.rfc-editor.org/info/std94). It also supports CBOR Sequences ([RFC&nbsp;8742](https://www.rfc-editor.org/rfc/rfc8742.html)) and Extended Diagnostic Notation ([Appendix G of RFC&nbsp;8610](https://www.rfc-editor.org/rfc/rfc8610.html#appendix-G)).
Notable CBOR features include:
| CBOR Feature | Description |
| :--- | :--- |
| CBOR tags | API supports built-in and user-defined tags. |
| Preferred serialization | Integers encode to fewest bytes. Optional float64 → float32 → float16. |
| Map key sorting | Unsorted, length-first (Canonical CBOR), and bytewise-lexicographic (CTAP2). |
| Duplicate map keys | Always forbid for encoding and option to allow/forbid for decoding. |
| Indefinite length data | Option to allow/forbid for encoding and decoding. |
| Well-formedness | Always checked and enforced. |
| Basic validity checks | Optionally check UTF-8 validity and duplicate map keys. |
| Security considerations | Prevent integer overflow and resource exhaustion (RFC 8949 Section 10). |
Known limitations are noted in the [Limitations section](#limitations).
Go nil values for slices, maps, pointers, etc. are encoded as CBOR null. Empty slices, maps, etc. are encoded as empty CBOR arrays and maps.
Decoder checks for all required well-formedness errors, including all "subkinds" of syntax errors and too little data.
After well-formedness is verified, basic validity errors are handled as follows:
* Invalid UTF-8 string: Decoder has option to check and return invalid UTF-8 string error. This check is enabled by default.
* Duplicate keys in a map: Decoder has options to ignore or enforce rejection of duplicate map keys.
When decoding well-formed CBOR arrays and maps, decoder saves the first error it encounters and continues with the next item. Options to handle this differently may be added in the future.
By default, decoder treats time values of floating-point NaN and Infinity as if they are CBOR Null or CBOR Undefined.
__Click to expand topic:__
<details>
<summary>Duplicate Map Keys</summary><p>
This library provides options for fast detection and rejection of duplicate map keys based on applying a Go-specific data model to CBOR's extended generic data model in order to determine duplicate vs distinct map keys. Detection relies on whether the CBOR map key would be a duplicate "key" when decoded and applied to the user-provided Go map or struct.
`DupMapKeyQuiet` turns off detection of duplicate map keys. It tries to use a "keep fastest" method by choosing either "keep first" or "keep last" depending on the Go data type.
`DupMapKeyEnforcedAPF` enforces detection and rejection of duplidate map keys. Decoding stops immediately and returns `DupMapKeyError` when the first duplicate key is detected. The error includes the duplicate map key and the index number.
APF suffix means "Allow Partial Fill" so the destination map or struct can contain some decoded values at the time of error. It is the caller's responsibility to respond to the `DupMapKeyError` by discarding the partially filled result if that's required by their protocol.
</details>
<details>
<summary>Tag Validity</summary><p>
This library checks tag validity for built-in tags (currently tag numbers 0, 1, 2, 3, and 55799):
* Inadmissible type for tag content
* Inadmissible value for tag content
Unknown tag data items (not tag number 0, 1, 2, 3, or 55799) are handled in two ways:
* When decoding into an empty interface, unknown tag data item will be decoded into `cbor.Tag` data type, which contains tag number and tag content. The tag content will be decoded into the default Go data type for the CBOR data type.
* When decoding into other Go types, unknown tag data item is decoded into the specified Go type. If Go type is registered with a tag number, the tag number can optionally be verified.
Decoder also has an option to forbid tag data items (treat any tag data item as error) which is specified by protocols such as CTAP2 Canonical CBOR.
For more information, see [decoding options](#decoding-options-1) and [tag options](#tag-options).
</details>
## Limitations
If any of these limitations prevent you from using this library, please open an issue along with a link to your project.
* CBOR `Undefined` (0xf7) value decodes to Go's `nil` value. CBOR `Null` (0xf6) more closely matches Go's `nil`.
* CBOR map keys with data types not supported by Go for map keys are ignored and an error is returned after continuing to decode remaining items.
* When decoding registered CBOR tag data to interface type, decoder creates a pointer to registered Go type matching CBOR tag number. Requiring a pointer for this is a Go limitation.
## Fuzzing and Code Coverage
__Code coverage__ is always 95% or higher (with `go test -cover`) when tagging a release.
__Coverage-guided fuzzing__ must pass billions of execs using before tagging a release. Fuzzing is done using nonpublic code which may eventually get merged into this project. Until then, reports like OpenSSF&nbsp;Scorecard can't detect fuzz tests being used by this project.
<hr>
## Versions and API Changes
This project uses [Semantic Versioning](https://semver.org), so the API is always backwards compatible unless the major version number changes.
These functions have signatures identical to encoding/json and their API will continue to match `encoding/json` even after major new releases:
`Marshal`, `Unmarshal`, `NewEncoder`, `NewDecoder`, `(*Encoder).Encode`, and `(*Decoder).Decode`.
Exclusions from SemVer:
- Newly added API documented as "subject to change".
- Newly added API in the master branch that has never been tagged in non-beta release.
- If function parameters are unchanged, bug fixes that change behavior (e.g. return error for edge case was missed in prior version). We try to highlight these in the release notes and add extended beta period. E.g. [v2.5.0-beta](https://github.com/fxamacker/cbor/releases/tag/v2.5.0-beta) (Dec 2022) -> [v2.5.0](https://github.com/fxamacker/cbor/releases/tag/v2.5.0) (Aug 2023).
This project avoids breaking changes to behavior of encoding and decoding functions unless required to improve conformance with supported RFCs (e.g. RFC 8949, RFC 8742, etc.) Visible changes that don't improve conformance to standards are typically made available as new opt-in settings or new functions.
## Code of Conduct
This project has adopted the [Contributor Covenant Code of Conduct](CODE_OF_CONDUCT.md). Contact [faye.github@gmail.com](mailto:faye.github@gmail.com) with any questions or comments.
## Contributing
Please open an issue before beginning work on a PR. The improvement may have already been considered, etc.
For more info, see [How to Contribute](CONTRIBUTING.md).
## Security Policy
Security fixes are provided for the latest released version of fxamacker/cbor.
For the full text of the Security Policy, see [SECURITY.md](SECURITY.md).
## Acknowledgements
Many thanks to all the contributors on this project!
I'm especially grateful to Bastian Müller and Dieter Shirley for suggesting and collaborating on CBOR stream mode, and much more.
I'm very grateful to Stefan Tatschner, Yawning Angel, Jernej Kos, x448, ZenGround0, and Jakob Borg for their contributions or support in the very early days.
Big thanks to Ben Luddy for his contributions in v2.6.0 and v2.7.0.
This library clearly wouldn't be possible without Carsten Bormann authoring CBOR RFCs.
Special thanks to Laurence Lundblade and Jeffrey Yasskin for their help on IETF mailing list or at [7049bis](https://github.com/cbor-wg/CBORbis).
Huge thanks to The Go Authors for creating a fun and practical programming language with batteries included!
This library uses `x448/float16` which used to be included. As a standalone package, `x448/float16` is useful to other projects as well.
## License
Copyright © 2019-2024 [Faye Amacker](https://github.com/fxamacker).
fxamacker/cbor is licensed under the MIT License. See [LICENSE](LICENSE) for the full license text.
<hr>

7
vendor/github.com/fxamacker/cbor/v2/SECURITY.md generated vendored Normal file
View File

@ -0,0 +1,7 @@
# Security Policy
Security fixes are provided for the latest released version of fxamacker/cbor.
If the security vulnerability is already known to the public, then you can open an issue as a bug report.
To report security vulnerabilities not yet known to the public, please email faye.github@gmail.com and allow time for the problem to be resolved before reporting it to the public.

63
vendor/github.com/fxamacker/cbor/v2/bytestring.go generated vendored Normal file
View File

@ -0,0 +1,63 @@
// Copyright (c) Faye Amacker. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for license information.
package cbor
import (
"errors"
)
// ByteString represents CBOR byte string (major type 2). ByteString can be used
// when using a Go []byte is not possible or convenient. For example, Go doesn't
// allow []byte as map key, so ByteString can be used to support data formats
// having CBOR map with byte string keys. ByteString can also be used to
// encode invalid UTF-8 string as CBOR byte string.
// See DecOption.MapKeyByteStringMode for more details.
type ByteString string
// Bytes returns bytes representing ByteString.
func (bs ByteString) Bytes() []byte {
return []byte(bs)
}
// MarshalCBOR encodes ByteString as CBOR byte string (major type 2).
func (bs ByteString) MarshalCBOR() ([]byte, error) {
e := getEncodeBuffer()
defer putEncodeBuffer(e)
// Encode length
encodeHead(e, byte(cborTypeByteString), uint64(len(bs)))
// Encode data
buf := make([]byte, e.Len()+len(bs))
n := copy(buf, e.Bytes())
copy(buf[n:], bs)
return buf, nil
}
// UnmarshalCBOR decodes CBOR byte string (major type 2) to ByteString.
// Decoding CBOR null and CBOR undefined sets ByteString to be empty.
func (bs *ByteString) UnmarshalCBOR(data []byte) error {
if bs == nil {
return errors.New("cbor.ByteString: UnmarshalCBOR on nil pointer")
}
// Decoding CBOR null and CBOR undefined to ByteString resets data.
// This behavior is similar to decoding CBOR null and CBOR undefined to []byte.
if len(data) == 1 && (data[0] == 0xf6 || data[0] == 0xf7) {
*bs = ""
return nil
}
d := decoder{data: data, dm: defaultDecMode}
// Check if CBOR data type is byte string
if typ := d.nextCBORType(); typ != cborTypeByteString {
return &UnmarshalTypeError{CBORType: typ.String(), GoType: typeByteString.String()}
}
b, _ := d.parseByteString()
*bs = ByteString(b)
return nil
}

363
vendor/github.com/fxamacker/cbor/v2/cache.go generated vendored Normal file
View File

@ -0,0 +1,363 @@
// Copyright (c) Faye Amacker. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for license information.
package cbor
import (
"bytes"
"errors"
"fmt"
"reflect"
"sort"
"strconv"
"strings"
"sync"
)
type encodeFuncs struct {
ef encodeFunc
ief isEmptyFunc
}
var (
decodingStructTypeCache sync.Map // map[reflect.Type]*decodingStructType
encodingStructTypeCache sync.Map // map[reflect.Type]*encodingStructType
encodeFuncCache sync.Map // map[reflect.Type]encodeFuncs
typeInfoCache sync.Map // map[reflect.Type]*typeInfo
)
type specialType int
const (
specialTypeNone specialType = iota
specialTypeUnmarshalerIface
specialTypeEmptyIface
specialTypeIface
specialTypeTag
specialTypeTime
)
type typeInfo struct {
elemTypeInfo *typeInfo
keyTypeInfo *typeInfo
typ reflect.Type
kind reflect.Kind
nonPtrType reflect.Type
nonPtrKind reflect.Kind
spclType specialType
}
func newTypeInfo(t reflect.Type) *typeInfo {
tInfo := typeInfo{typ: t, kind: t.Kind()}
for t.Kind() == reflect.Ptr {
t = t.Elem()
}
k := t.Kind()
tInfo.nonPtrType = t
tInfo.nonPtrKind = k
if k == reflect.Interface {
if t.NumMethod() == 0 {
tInfo.spclType = specialTypeEmptyIface
} else {
tInfo.spclType = specialTypeIface
}
} else if t == typeTag {
tInfo.spclType = specialTypeTag
} else if t == typeTime {
tInfo.spclType = specialTypeTime
} else if reflect.PtrTo(t).Implements(typeUnmarshaler) {
tInfo.spclType = specialTypeUnmarshalerIface
}
switch k {
case reflect.Array, reflect.Slice:
tInfo.elemTypeInfo = getTypeInfo(t.Elem())
case reflect.Map:
tInfo.keyTypeInfo = getTypeInfo(t.Key())
tInfo.elemTypeInfo = getTypeInfo(t.Elem())
}
return &tInfo
}
type decodingStructType struct {
fields fields
fieldIndicesByName map[string]int
err error
toArray bool
}
// The stdlib errors.Join was introduced in Go 1.20, and we still support Go 1.17, so instead,
// here's a very basic implementation of an aggregated error.
type multierror []error
func (m multierror) Error() string {
var sb strings.Builder
for i, err := range m {
sb.WriteString(err.Error())
if i < len(m)-1 {
sb.WriteString(", ")
}
}
return sb.String()
}
func getDecodingStructType(t reflect.Type) *decodingStructType {
if v, _ := decodingStructTypeCache.Load(t); v != nil {
return v.(*decodingStructType)
}
flds, structOptions := getFields(t)
toArray := hasToArrayOption(structOptions)
var errs []error
for i := 0; i < len(flds); i++ {
if flds[i].keyAsInt {
nameAsInt, numErr := strconv.Atoi(flds[i].name)
if numErr != nil {
errs = append(errs, errors.New("cbor: failed to parse field name \""+flds[i].name+"\" to int ("+numErr.Error()+")"))
break
}
flds[i].nameAsInt = int64(nameAsInt)
}
flds[i].typInfo = getTypeInfo(flds[i].typ)
}
fieldIndicesByName := make(map[string]int, len(flds))
for i, fld := range flds {
if _, ok := fieldIndicesByName[fld.name]; ok {
errs = append(errs, fmt.Errorf("cbor: two or more fields of %v have the same name %q", t, fld.name))
continue
}
fieldIndicesByName[fld.name] = i
}
var err error
{
var multi multierror
for _, each := range errs {
if each != nil {
multi = append(multi, each)
}
}
if len(multi) == 1 {
err = multi[0]
} else if len(multi) > 1 {
err = multi
}
}
structType := &decodingStructType{
fields: flds,
fieldIndicesByName: fieldIndicesByName,
err: err,
toArray: toArray,
}
decodingStructTypeCache.Store(t, structType)
return structType
}
type encodingStructType struct {
fields fields
bytewiseFields fields
lengthFirstFields fields
omitEmptyFieldsIdx []int
err error
toArray bool
}
func (st *encodingStructType) getFields(em *encMode) fields {
switch em.sort {
case SortNone, SortFastShuffle:
return st.fields
case SortLengthFirst:
return st.lengthFirstFields
default:
return st.bytewiseFields
}
}
type bytewiseFieldSorter struct {
fields fields
}
func (x *bytewiseFieldSorter) Len() int {
return len(x.fields)
}
func (x *bytewiseFieldSorter) Swap(i, j int) {
x.fields[i], x.fields[j] = x.fields[j], x.fields[i]
}
func (x *bytewiseFieldSorter) Less(i, j int) bool {
return bytes.Compare(x.fields[i].cborName, x.fields[j].cborName) <= 0
}
type lengthFirstFieldSorter struct {
fields fields
}
func (x *lengthFirstFieldSorter) Len() int {
return len(x.fields)
}
func (x *lengthFirstFieldSorter) Swap(i, j int) {
x.fields[i], x.fields[j] = x.fields[j], x.fields[i]
}
func (x *lengthFirstFieldSorter) Less(i, j int) bool {
if len(x.fields[i].cborName) != len(x.fields[j].cborName) {
return len(x.fields[i].cborName) < len(x.fields[j].cborName)
}
return bytes.Compare(x.fields[i].cborName, x.fields[j].cborName) <= 0
}
func getEncodingStructType(t reflect.Type) (*encodingStructType, error) {
if v, _ := encodingStructTypeCache.Load(t); v != nil {
structType := v.(*encodingStructType)
return structType, structType.err
}
flds, structOptions := getFields(t)
if hasToArrayOption(structOptions) {
return getEncodingStructToArrayType(t, flds)
}
var err error
var hasKeyAsInt bool
var hasKeyAsStr bool
var omitEmptyIdx []int
e := getEncodeBuffer()
for i := 0; i < len(flds); i++ {
// Get field's encodeFunc
flds[i].ef, flds[i].ief = getEncodeFunc(flds[i].typ)
if flds[i].ef == nil {
err = &UnsupportedTypeError{t}
break
}
// Encode field name
if flds[i].keyAsInt {
nameAsInt, numErr := strconv.Atoi(flds[i].name)
if numErr != nil {
err = errors.New("cbor: failed to parse field name \"" + flds[i].name + "\" to int (" + numErr.Error() + ")")
break
}
flds[i].nameAsInt = int64(nameAsInt)
if nameAsInt >= 0 {
encodeHead(e, byte(cborTypePositiveInt), uint64(nameAsInt))
} else {
n := nameAsInt*(-1) - 1
encodeHead(e, byte(cborTypeNegativeInt), uint64(n))
}
flds[i].cborName = make([]byte, e.Len())
copy(flds[i].cborName, e.Bytes())
e.Reset()
hasKeyAsInt = true
} else {
encodeHead(e, byte(cborTypeTextString), uint64(len(flds[i].name)))
flds[i].cborName = make([]byte, e.Len()+len(flds[i].name))
n := copy(flds[i].cborName, e.Bytes())
copy(flds[i].cborName[n:], flds[i].name)
e.Reset()
// If cborName contains a text string, then cborNameByteString contains a
// string that has the byte string major type but is otherwise identical to
// cborName.
flds[i].cborNameByteString = make([]byte, len(flds[i].cborName))
copy(flds[i].cborNameByteString, flds[i].cborName)
// Reset encoded CBOR type to byte string, preserving the "additional
// information" bits:
flds[i].cborNameByteString[0] = byte(cborTypeByteString) |
getAdditionalInformation(flds[i].cborNameByteString[0])
hasKeyAsStr = true
}
// Check if field can be omitted when empty
if flds[i].omitEmpty {
omitEmptyIdx = append(omitEmptyIdx, i)
}
}
putEncodeBuffer(e)
if err != nil {
structType := &encodingStructType{err: err}
encodingStructTypeCache.Store(t, structType)
return structType, structType.err
}
// Sort fields by canonical order
bytewiseFields := make(fields, len(flds))
copy(bytewiseFields, flds)
sort.Sort(&bytewiseFieldSorter{bytewiseFields})
lengthFirstFields := bytewiseFields
if hasKeyAsInt && hasKeyAsStr {
lengthFirstFields = make(fields, len(flds))
copy(lengthFirstFields, flds)
sort.Sort(&lengthFirstFieldSorter{lengthFirstFields})
}
structType := &encodingStructType{
fields: flds,
bytewiseFields: bytewiseFields,
lengthFirstFields: lengthFirstFields,
omitEmptyFieldsIdx: omitEmptyIdx,
}
encodingStructTypeCache.Store(t, structType)
return structType, structType.err
}
func getEncodingStructToArrayType(t reflect.Type, flds fields) (*encodingStructType, error) {
for i := 0; i < len(flds); i++ {
// Get field's encodeFunc
flds[i].ef, flds[i].ief = getEncodeFunc(flds[i].typ)
if flds[i].ef == nil {
structType := &encodingStructType{err: &UnsupportedTypeError{t}}
encodingStructTypeCache.Store(t, structType)
return structType, structType.err
}
}
structType := &encodingStructType{
fields: flds,
toArray: true,
}
encodingStructTypeCache.Store(t, structType)
return structType, structType.err
}
func getEncodeFunc(t reflect.Type) (encodeFunc, isEmptyFunc) {
if v, _ := encodeFuncCache.Load(t); v != nil {
fs := v.(encodeFuncs)
return fs.ef, fs.ief
}
ef, ief := getEncodeFuncInternal(t)
encodeFuncCache.Store(t, encodeFuncs{ef, ief})
return ef, ief
}
func getTypeInfo(t reflect.Type) *typeInfo {
if v, _ := typeInfoCache.Load(t); v != nil {
return v.(*typeInfo)
}
tInfo := newTypeInfo(t)
typeInfoCache.Store(t, tInfo)
return tInfo
}
func hasToArrayOption(tag string) bool {
s := ",toarray"
idx := strings.Index(tag, s)
return idx >= 0 && (len(tag) == idx+len(s) || tag[idx+len(s)] == ',')
}

182
vendor/github.com/fxamacker/cbor/v2/common.go generated vendored Normal file
View File

@ -0,0 +1,182 @@
// Copyright (c) Faye Amacker. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for license information.
package cbor
import (
"fmt"
"strconv"
)
type cborType uint8
const (
cborTypePositiveInt cborType = 0x00
cborTypeNegativeInt cborType = 0x20
cborTypeByteString cborType = 0x40
cborTypeTextString cborType = 0x60
cborTypeArray cborType = 0x80
cborTypeMap cborType = 0xa0
cborTypeTag cborType = 0xc0
cborTypePrimitives cborType = 0xe0
)
func (t cborType) String() string {
switch t {
case cborTypePositiveInt:
return "positive integer"
case cborTypeNegativeInt:
return "negative integer"
case cborTypeByteString:
return "byte string"
case cborTypeTextString:
return "UTF-8 text string"
case cborTypeArray:
return "array"
case cborTypeMap:
return "map"
case cborTypeTag:
return "tag"
case cborTypePrimitives:
return "primitives"
default:
return "Invalid type " + strconv.Itoa(int(t))
}
}
type additionalInformation uint8
const (
maxAdditionalInformationWithoutArgument = 23
additionalInformationWith1ByteArgument = 24
additionalInformationWith2ByteArgument = 25
additionalInformationWith4ByteArgument = 26
additionalInformationWith8ByteArgument = 27
// For major type 7.
additionalInformationAsFalse = 20
additionalInformationAsTrue = 21
additionalInformationAsNull = 22
additionalInformationAsUndefined = 23
additionalInformationAsFloat16 = 25
additionalInformationAsFloat32 = 26
additionalInformationAsFloat64 = 27
// For major type 2, 3, 4, 5.
additionalInformationAsIndefiniteLengthFlag = 31
)
const (
maxSimpleValueInAdditionalInformation = 23
minSimpleValueIn1ByteArgument = 32
)
func (ai additionalInformation) isIndefiniteLength() bool {
return ai == additionalInformationAsIndefiniteLengthFlag
}
const (
// From RFC 8949 Section 3:
// "The initial byte of each encoded data item contains both information about the major type
// (the high-order 3 bits, described in Section 3.1) and additional information
// (the low-order 5 bits)."
// typeMask is used to extract major type in initial byte of encoded data item.
typeMask = 0xe0
// additionalInformationMask is used to extract additional information in initial byte of encoded data item.
additionalInformationMask = 0x1f
)
func getType(raw byte) cborType {
return cborType(raw & typeMask)
}
func getAdditionalInformation(raw byte) byte {
return raw & additionalInformationMask
}
func isBreakFlag(raw byte) bool {
return raw == cborBreakFlag
}
func parseInitialByte(b byte) (t cborType, ai byte) {
return getType(b), getAdditionalInformation(b)
}
const (
tagNumRFC3339Time = 0
tagNumEpochTime = 1
tagNumUnsignedBignum = 2
tagNumNegativeBignum = 3
tagNumExpectedLaterEncodingBase64URL = 21
tagNumExpectedLaterEncodingBase64 = 22
tagNumExpectedLaterEncodingBase16 = 23
tagNumSelfDescribedCBOR = 55799
)
const (
cborBreakFlag = byte(0xff)
cborByteStringWithIndefiniteLengthHead = byte(0x5f)
cborTextStringWithIndefiniteLengthHead = byte(0x7f)
cborArrayWithIndefiniteLengthHead = byte(0x9f)
cborMapWithIndefiniteLengthHead = byte(0xbf)
)
var (
cborFalse = []byte{0xf4}
cborTrue = []byte{0xf5}
cborNil = []byte{0xf6}
cborNaN = []byte{0xf9, 0x7e, 0x00}
cborPositiveInfinity = []byte{0xf9, 0x7c, 0x00}
cborNegativeInfinity = []byte{0xf9, 0xfc, 0x00}
)
// validBuiltinTag checks that supported built-in tag numbers are followed by expected content types.
func validBuiltinTag(tagNum uint64, contentHead byte) error {
t := getType(contentHead)
switch tagNum {
case tagNumRFC3339Time:
// Tag content (date/time text string in RFC 3339 format) must be string type.
if t != cborTypeTextString {
return newInadmissibleTagContentTypeError(
tagNumRFC3339Time,
"text string",
t.String())
}
return nil
case tagNumEpochTime:
// Tag content (epoch date/time) must be uint, int, or float type.
if t != cborTypePositiveInt && t != cborTypeNegativeInt && (contentHead < 0xf9 || contentHead > 0xfb) {
return newInadmissibleTagContentTypeError(
tagNumEpochTime,
"integer or floating-point number",
t.String())
}
return nil
case tagNumUnsignedBignum, tagNumNegativeBignum:
// Tag content (bignum) must be byte type.
if t != cborTypeByteString {
return newInadmissibleTagContentTypeErrorf(
fmt.Sprintf(
"tag number %d or %d must be followed by byte string, got %s",
tagNumUnsignedBignum,
tagNumNegativeBignum,
t.String(),
))
}
return nil
case tagNumExpectedLaterEncodingBase64URL, tagNumExpectedLaterEncodingBase64, tagNumExpectedLaterEncodingBase16:
// From RFC 8949 3.4.5.2:
// The data item tagged can be a byte string or any other data item. In the latter
// case, the tag applies to all of the byte string data items contained in the data
// item, except for those contained in a nested data item tagged with an expected
// conversion.
return nil
}
return nil
}

3187
vendor/github.com/fxamacker/cbor/v2/decode.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

724
vendor/github.com/fxamacker/cbor/v2/diagnose.go generated vendored Normal file
View File

@ -0,0 +1,724 @@
// Copyright (c) Faye Amacker. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for license information.
package cbor
import (
"bytes"
"encoding/base32"
"encoding/base64"
"encoding/hex"
"errors"
"fmt"
"io"
"math"
"math/big"
"strconv"
"unicode/utf16"
"unicode/utf8"
"github.com/x448/float16"
)
// DiagMode is the main interface for CBOR diagnostic notation.
type DiagMode interface {
// Diagnose returns extended diagnostic notation (EDN) of CBOR data items using this DiagMode.
Diagnose([]byte) (string, error)
// DiagnoseFirst returns extended diagnostic notation (EDN) of the first CBOR data item using the DiagMode. Any remaining bytes are returned in rest.
DiagnoseFirst([]byte) (string, []byte, error)
// DiagOptions returns user specified options used to create this DiagMode.
DiagOptions() DiagOptions
}
// ByteStringEncoding specifies the base encoding that byte strings are notated.
type ByteStringEncoding uint8
const (
// ByteStringBase16Encoding encodes byte strings in base16, without padding.
ByteStringBase16Encoding ByteStringEncoding = iota
// ByteStringBase32Encoding encodes byte strings in base32, without padding.
ByteStringBase32Encoding
// ByteStringBase32HexEncoding encodes byte strings in base32hex, without padding.
ByteStringBase32HexEncoding
// ByteStringBase64Encoding encodes byte strings in base64url, without padding.
ByteStringBase64Encoding
maxByteStringEncoding
)
func (bse ByteStringEncoding) valid() error {
if bse >= maxByteStringEncoding {
return errors.New("cbor: invalid ByteStringEncoding " + strconv.Itoa(int(bse)))
}
return nil
}
// DiagOptions specifies Diag options.
type DiagOptions struct {
// ByteStringEncoding specifies the base encoding that byte strings are notated.
// Default is ByteStringBase16Encoding.
ByteStringEncoding ByteStringEncoding
// ByteStringHexWhitespace specifies notating with whitespace in byte string
// when ByteStringEncoding is ByteStringBase16Encoding.
ByteStringHexWhitespace bool
// ByteStringText specifies notating with text in byte string
// if it is a valid UTF-8 text.
ByteStringText bool
// ByteStringEmbeddedCBOR specifies notating embedded CBOR in byte string
// if it is a valid CBOR bytes.
ByteStringEmbeddedCBOR bool
// CBORSequence specifies notating CBOR sequences.
// otherwise, it returns an error if there are more bytes after the first CBOR.
CBORSequence bool
// FloatPrecisionIndicator specifies appending a suffix to indicate float precision.
// Refer to https://www.rfc-editor.org/rfc/rfc8949.html#name-encoding-indicators.
FloatPrecisionIndicator bool
// MaxNestedLevels specifies the max nested levels allowed for any combination of CBOR array, maps, and tags.
// Default is 32 levels and it can be set to [4, 65535]. Note that higher maximum levels of nesting can
// require larger amounts of stack to deserialize. Don't increase this higher than you require.
MaxNestedLevels int
// MaxArrayElements specifies the max number of elements for CBOR arrays.
// Default is 128*1024=131072 and it can be set to [16, 2147483647]
MaxArrayElements int
// MaxMapPairs specifies the max number of key-value pairs for CBOR maps.
// Default is 128*1024=131072 and it can be set to [16, 2147483647]
MaxMapPairs int
}
// DiagMode returns a DiagMode with immutable options.
func (opts DiagOptions) DiagMode() (DiagMode, error) {
return opts.diagMode()
}
func (opts DiagOptions) diagMode() (*diagMode, error) {
if err := opts.ByteStringEncoding.valid(); err != nil {
return nil, err
}
decMode, err := DecOptions{
MaxNestedLevels: opts.MaxNestedLevels,
MaxArrayElements: opts.MaxArrayElements,
MaxMapPairs: opts.MaxMapPairs,
}.decMode()
if err != nil {
return nil, err
}
return &diagMode{
byteStringEncoding: opts.ByteStringEncoding,
byteStringHexWhitespace: opts.ByteStringHexWhitespace,
byteStringText: opts.ByteStringText,
byteStringEmbeddedCBOR: opts.ByteStringEmbeddedCBOR,
cborSequence: opts.CBORSequence,
floatPrecisionIndicator: opts.FloatPrecisionIndicator,
decMode: decMode,
}, nil
}
type diagMode struct {
byteStringEncoding ByteStringEncoding
byteStringHexWhitespace bool
byteStringText bool
byteStringEmbeddedCBOR bool
cborSequence bool
floatPrecisionIndicator bool
decMode *decMode
}
// DiagOptions returns user specified options used to create this DiagMode.
func (dm *diagMode) DiagOptions() DiagOptions {
return DiagOptions{
ByteStringEncoding: dm.byteStringEncoding,
ByteStringHexWhitespace: dm.byteStringHexWhitespace,
ByteStringText: dm.byteStringText,
ByteStringEmbeddedCBOR: dm.byteStringEmbeddedCBOR,
CBORSequence: dm.cborSequence,
FloatPrecisionIndicator: dm.floatPrecisionIndicator,
MaxNestedLevels: dm.decMode.maxNestedLevels,
MaxArrayElements: dm.decMode.maxArrayElements,
MaxMapPairs: dm.decMode.maxMapPairs,
}
}
// Diagnose returns extended diagnostic notation (EDN) of CBOR data items using the DiagMode.
func (dm *diagMode) Diagnose(data []byte) (string, error) {
return newDiagnose(data, dm.decMode, dm).diag(dm.cborSequence)
}
// DiagnoseFirst returns extended diagnostic notation (EDN) of the first CBOR data item using the DiagMode. Any remaining bytes are returned in rest.
func (dm *diagMode) DiagnoseFirst(data []byte) (diagNotation string, rest []byte, err error) {
return newDiagnose(data, dm.decMode, dm).diagFirst()
}
var defaultDiagMode, _ = DiagOptions{}.diagMode()
// Diagnose returns extended diagnostic notation (EDN) of CBOR data items
// using the default diagnostic mode.
//
// Refer to https://www.rfc-editor.org/rfc/rfc8949.html#name-diagnostic-notation.
func Diagnose(data []byte) (string, error) {
return defaultDiagMode.Diagnose(data)
}
// Diagnose returns extended diagnostic notation (EDN) of the first CBOR data item using the DiagMode. Any remaining bytes are returned in rest.
func DiagnoseFirst(data []byte) (diagNotation string, rest []byte, err error) {
return defaultDiagMode.DiagnoseFirst(data)
}
type diagnose struct {
dm *diagMode
d *decoder
w *bytes.Buffer
}
func newDiagnose(data []byte, decm *decMode, diagm *diagMode) *diagnose {
return &diagnose{
dm: diagm,
d: &decoder{data: data, dm: decm},
w: &bytes.Buffer{},
}
}
func (di *diagnose) diag(cborSequence bool) (string, error) {
// CBOR Sequence
firstItem := true
for {
switch err := di.wellformed(cborSequence); err {
case nil:
if !firstItem {
di.w.WriteString(", ")
}
firstItem = false
if itemErr := di.item(); itemErr != nil {
return di.w.String(), itemErr
}
case io.EOF:
if firstItem {
return di.w.String(), err
}
return di.w.String(), nil
default:
return di.w.String(), err
}
}
}
func (di *diagnose) diagFirst() (diagNotation string, rest []byte, err error) {
err = di.wellformed(true)
if err == nil {
err = di.item()
}
if err == nil {
// Return EDN and the rest of the data slice (which might be len 0)
return di.w.String(), di.d.data[di.d.off:], nil
}
return di.w.String(), nil, err
}
func (di *diagnose) wellformed(allowExtraData bool) error {
off := di.d.off
err := di.d.wellformed(allowExtraData, false)
di.d.off = off
return err
}
func (di *diagnose) item() error { //nolint:gocyclo
initialByte := di.d.data[di.d.off]
switch initialByte {
case cborByteStringWithIndefiniteLengthHead,
cborTextStringWithIndefiniteLengthHead: // indefinite-length byte/text string
di.d.off++
if isBreakFlag(di.d.data[di.d.off]) {
di.d.off++
switch initialByte {
case cborByteStringWithIndefiniteLengthHead:
// indefinite-length bytes with no chunks.
di.w.WriteString(`''_`)
return nil
case cborTextStringWithIndefiniteLengthHead:
// indefinite-length text with no chunks.
di.w.WriteString(`""_`)
return nil
}
}
di.w.WriteString("(_ ")
i := 0
for !di.d.foundBreak() {
if i > 0 {
di.w.WriteString(", ")
}
i++
// wellformedIndefiniteString() already checked that the next item is a byte/text string.
if err := di.item(); err != nil {
return err
}
}
di.w.WriteByte(')')
return nil
case cborArrayWithIndefiniteLengthHead: // indefinite-length array
di.d.off++
di.w.WriteString("[_ ")
i := 0
for !di.d.foundBreak() {
if i > 0 {
di.w.WriteString(", ")
}
i++
if err := di.item(); err != nil {
return err
}
}
di.w.WriteByte(']')
return nil
case cborMapWithIndefiniteLengthHead: // indefinite-length map
di.d.off++
di.w.WriteString("{_ ")
i := 0
for !di.d.foundBreak() {
if i > 0 {
di.w.WriteString(", ")
}
i++
// key
if err := di.item(); err != nil {
return err
}
di.w.WriteString(": ")
// value
if err := di.item(); err != nil {
return err
}
}
di.w.WriteByte('}')
return nil
}
t := di.d.nextCBORType()
switch t {
case cborTypePositiveInt:
_, _, val := di.d.getHead()
di.w.WriteString(strconv.FormatUint(val, 10))
return nil
case cborTypeNegativeInt:
_, _, val := di.d.getHead()
if val > math.MaxInt64 {
// CBOR negative integer overflows int64, use big.Int to store value.
bi := new(big.Int)
bi.SetUint64(val)
bi.Add(bi, big.NewInt(1))
bi.Neg(bi)
di.w.WriteString(bi.String())
return nil
}
nValue := int64(-1) ^ int64(val)
di.w.WriteString(strconv.FormatInt(nValue, 10))
return nil
case cborTypeByteString:
b, _ := di.d.parseByteString()
return di.encodeByteString(b)
case cborTypeTextString:
b, err := di.d.parseTextString()
if err != nil {
return err
}
return di.encodeTextString(string(b), '"')
case cborTypeArray:
_, _, val := di.d.getHead()
count := int(val)
di.w.WriteByte('[')
for i := 0; i < count; i++ {
if i > 0 {
di.w.WriteString(", ")
}
if err := di.item(); err != nil {
return err
}
}
di.w.WriteByte(']')
return nil
case cborTypeMap:
_, _, val := di.d.getHead()
count := int(val)
di.w.WriteByte('{')
for i := 0; i < count; i++ {
if i > 0 {
di.w.WriteString(", ")
}
// key
if err := di.item(); err != nil {
return err
}
di.w.WriteString(": ")
// value
if err := di.item(); err != nil {
return err
}
}
di.w.WriteByte('}')
return nil
case cborTypeTag:
_, _, tagNum := di.d.getHead()
switch tagNum {
case tagNumUnsignedBignum:
if nt := di.d.nextCBORType(); nt != cborTypeByteString {
return newInadmissibleTagContentTypeError(
tagNumUnsignedBignum,
"byte string",
nt.String())
}
b, _ := di.d.parseByteString()
bi := new(big.Int).SetBytes(b)
di.w.WriteString(bi.String())
return nil
case tagNumNegativeBignum:
if nt := di.d.nextCBORType(); nt != cborTypeByteString {
return newInadmissibleTagContentTypeError(
tagNumNegativeBignum,
"byte string",
nt.String(),
)
}
b, _ := di.d.parseByteString()
bi := new(big.Int).SetBytes(b)
bi.Add(bi, big.NewInt(1))
bi.Neg(bi)
di.w.WriteString(bi.String())
return nil
default:
di.w.WriteString(strconv.FormatUint(tagNum, 10))
di.w.WriteByte('(')
if err := di.item(); err != nil {
return err
}
di.w.WriteByte(')')
return nil
}
case cborTypePrimitives:
_, ai, val := di.d.getHead()
switch ai {
case additionalInformationAsFalse:
di.w.WriteString("false")
return nil
case additionalInformationAsTrue:
di.w.WriteString("true")
return nil
case additionalInformationAsNull:
di.w.WriteString("null")
return nil
case additionalInformationAsUndefined:
di.w.WriteString("undefined")
return nil
case additionalInformationAsFloat16,
additionalInformationAsFloat32,
additionalInformationAsFloat64:
return di.encodeFloat(ai, val)
default:
di.w.WriteString("simple(")
di.w.WriteString(strconv.FormatUint(val, 10))
di.w.WriteByte(')')
return nil
}
}
return nil
}
// writeU16 format a rune as "\uxxxx"
func (di *diagnose) writeU16(val rune) {
di.w.WriteString("\\u")
var in [2]byte
in[0] = byte(val >> 8)
in[1] = byte(val)
sz := hex.EncodedLen(len(in))
di.w.Grow(sz)
dst := di.w.Bytes()[di.w.Len() : di.w.Len()+sz]
hex.Encode(dst, in[:])
di.w.Write(dst)
}
var rawBase32Encoding = base32.StdEncoding.WithPadding(base32.NoPadding)
var rawBase32HexEncoding = base32.HexEncoding.WithPadding(base32.NoPadding)
func (di *diagnose) encodeByteString(val []byte) error {
if len(val) > 0 {
if di.dm.byteStringText && utf8.Valid(val) {
return di.encodeTextString(string(val), '\'')
}
if di.dm.byteStringEmbeddedCBOR {
di2 := newDiagnose(val, di.dm.decMode, di.dm)
// should always notating embedded CBOR sequence.
if str, err := di2.diag(true); err == nil {
di.w.WriteString("<<")
di.w.WriteString(str)
di.w.WriteString(">>")
return nil
}
}
}
switch di.dm.byteStringEncoding {
case ByteStringBase16Encoding:
di.w.WriteString("h'")
if di.dm.byteStringHexWhitespace {
sz := hex.EncodedLen(len(val))
if len(val) > 0 {
sz += len(val) - 1
}
di.w.Grow(sz)
dst := di.w.Bytes()[di.w.Len():]
for i := range val {
if i > 0 {
dst = append(dst, ' ')
}
hex.Encode(dst[len(dst):len(dst)+2], val[i:i+1])
dst = dst[:len(dst)+2]
}
di.w.Write(dst)
} else {
sz := hex.EncodedLen(len(val))
di.w.Grow(sz)
dst := di.w.Bytes()[di.w.Len() : di.w.Len()+sz]
hex.Encode(dst, val)
di.w.Write(dst)
}
di.w.WriteByte('\'')
return nil
case ByteStringBase32Encoding:
di.w.WriteString("b32'")
sz := rawBase32Encoding.EncodedLen(len(val))
di.w.Grow(sz)
dst := di.w.Bytes()[di.w.Len() : di.w.Len()+sz]
rawBase32Encoding.Encode(dst, val)
di.w.Write(dst)
di.w.WriteByte('\'')
return nil
case ByteStringBase32HexEncoding:
di.w.WriteString("h32'")
sz := rawBase32HexEncoding.EncodedLen(len(val))
di.w.Grow(sz)
dst := di.w.Bytes()[di.w.Len() : di.w.Len()+sz]
rawBase32HexEncoding.Encode(dst, val)
di.w.Write(dst)
di.w.WriteByte('\'')
return nil
case ByteStringBase64Encoding:
di.w.WriteString("b64'")
sz := base64.RawURLEncoding.EncodedLen(len(val))
di.w.Grow(sz)
dst := di.w.Bytes()[di.w.Len() : di.w.Len()+sz]
base64.RawURLEncoding.Encode(dst, val)
di.w.Write(dst)
di.w.WriteByte('\'')
return nil
default:
// It should not be possible for users to construct a *diagMode with an invalid byte
// string encoding.
panic(fmt.Sprintf("diagmode has invalid ByteStringEncoding %v", di.dm.byteStringEncoding))
}
}
const utf16SurrSelf = rune(0x10000)
// quote should be either `'` or `"`
func (di *diagnose) encodeTextString(val string, quote byte) error {
di.w.WriteByte(quote)
for i := 0; i < len(val); {
if b := val[i]; b < utf8.RuneSelf {
switch {
case b == '\t', b == '\n', b == '\r', b == '\\', b == quote:
di.w.WriteByte('\\')
switch b {
case '\t':
b = 't'
case '\n':
b = 'n'
case '\r':
b = 'r'
}
di.w.WriteByte(b)
case b >= ' ' && b <= '~':
di.w.WriteByte(b)
default:
di.writeU16(rune(b))
}
i++
continue
}
c, size := utf8.DecodeRuneInString(val[i:])
switch {
case c == utf8.RuneError:
return &SemanticError{"cbor: invalid UTF-8 string"}
case c < utf16SurrSelf:
di.writeU16(c)
default:
c1, c2 := utf16.EncodeRune(c)
di.writeU16(c1)
di.writeU16(c2)
}
i += size
}
di.w.WriteByte(quote)
return nil
}
func (di *diagnose) encodeFloat(ai byte, val uint64) error {
f64 := float64(0)
switch ai {
case additionalInformationAsFloat16:
f16 := float16.Frombits(uint16(val))
switch {
case f16.IsNaN():
di.w.WriteString("NaN")
return nil
case f16.IsInf(1):
di.w.WriteString("Infinity")
return nil
case f16.IsInf(-1):
di.w.WriteString("-Infinity")
return nil
default:
f64 = float64(f16.Float32())
}
case additionalInformationAsFloat32:
f32 := math.Float32frombits(uint32(val))
switch {
case f32 != f32:
di.w.WriteString("NaN")
return nil
case f32 > math.MaxFloat32:
di.w.WriteString("Infinity")
return nil
case f32 < -math.MaxFloat32:
di.w.WriteString("-Infinity")
return nil
default:
f64 = float64(f32)
}
case additionalInformationAsFloat64:
f64 = math.Float64frombits(val)
switch {
case f64 != f64:
di.w.WriteString("NaN")
return nil
case f64 > math.MaxFloat64:
di.w.WriteString("Infinity")
return nil
case f64 < -math.MaxFloat64:
di.w.WriteString("-Infinity")
return nil
}
}
// Use ES6 number to string conversion which should match most JSON generators.
// Inspired by https://github.com/golang/go/blob/4df10fba1687a6d4f51d7238a403f8f2298f6a16/src/encoding/json/encode.go#L585
const bitSize = 64
b := make([]byte, 0, 32)
if abs := math.Abs(f64); abs != 0 && (abs < 1e-6 || abs >= 1e21) {
b = strconv.AppendFloat(b, f64, 'e', -1, bitSize)
// clean up e-09 to e-9
n := len(b)
if n >= 4 && string(b[n-4:n-1]) == "e-0" {
b = append(b[:n-2], b[n-1])
}
} else {
b = strconv.AppendFloat(b, f64, 'f', -1, bitSize)
}
// add decimal point and trailing zero if needed
if bytes.IndexByte(b, '.') < 0 {
if i := bytes.IndexByte(b, 'e'); i < 0 {
b = append(b, '.', '0')
} else {
b = append(b[:i+2], b[i:]...)
b[i] = '.'
b[i+1] = '0'
}
}
di.w.WriteString(string(b))
if di.dm.floatPrecisionIndicator {
switch ai {
case additionalInformationAsFloat16:
di.w.WriteString("_1")
return nil
case additionalInformationAsFloat32:
di.w.WriteString("_2")
return nil
case additionalInformationAsFloat64:
di.w.WriteString("_3")
return nil
}
}
return nil
}

129
vendor/github.com/fxamacker/cbor/v2/doc.go generated vendored Normal file
View File

@ -0,0 +1,129 @@
// Copyright (c) Faye Amacker. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for license information.
/*
Package cbor is a modern CBOR codec (RFC 8949 & RFC 7049) with CBOR tags,
Go struct tags (toarray/keyasint/omitempty), Core Deterministic Encoding,
CTAP2, Canonical CBOR, float64->32->16, and duplicate map key detection.
Encoding options allow "preferred serialization" by encoding integers and floats
to their smallest forms (e.g. float16) when values fit.
Struct tags like "keyasint", "toarray" and "omitempty" make CBOR data smaller
and easier to use with structs.
For example, "toarray" tag makes struct fields encode to CBOR array elements. And
"keyasint" makes a field encode to an element of CBOR map with specified int key.
Latest docs can be viewed at https://github.com/fxamacker/cbor#cbor-library-in-go
# Basics
The Quick Start guide is at https://github.com/fxamacker/cbor#quick-start
Function signatures identical to encoding/json include:
Marshal, Unmarshal, NewEncoder, NewDecoder, (*Encoder).Encode, (*Decoder).Decode.
Standard interfaces include:
BinaryMarshaler, BinaryUnmarshaler, Marshaler, and Unmarshaler.
Custom encoding and decoding is possible by implementing standard interfaces for
user-defined Go types.
Codec functions are available at package-level (using defaults options) or by
creating modes from options at runtime.
"Mode" in this API means definite way of encoding (EncMode) or decoding (DecMode).
EncMode and DecMode interfaces are created from EncOptions or DecOptions structs.
em, err := cbor.EncOptions{...}.EncMode()
em, err := cbor.CanonicalEncOptions().EncMode()
em, err := cbor.CTAP2EncOptions().EncMode()
Modes use immutable options to avoid side-effects and simplify concurrency. Behavior of
modes won't accidentally change at runtime after they're created.
Modes are intended to be reused and are safe for concurrent use.
EncMode and DecMode Interfaces
// EncMode interface uses immutable options and is safe for concurrent use.
type EncMode interface {
Marshal(v interface{}) ([]byte, error)
NewEncoder(w io.Writer) *Encoder
EncOptions() EncOptions // returns copy of options
}
// DecMode interface uses immutable options and is safe for concurrent use.
type DecMode interface {
Unmarshal(data []byte, v interface{}) error
NewDecoder(r io.Reader) *Decoder
DecOptions() DecOptions // returns copy of options
}
Using Default Encoding Mode
b, err := cbor.Marshal(v)
encoder := cbor.NewEncoder(w)
err = encoder.Encode(v)
Using Default Decoding Mode
err := cbor.Unmarshal(b, &v)
decoder := cbor.NewDecoder(r)
err = decoder.Decode(&v)
Creating and Using Encoding Modes
// Create EncOptions using either struct literal or a function.
opts := cbor.CanonicalEncOptions()
// If needed, modify encoding options
opts.Time = cbor.TimeUnix
// Create reusable EncMode interface with immutable options, safe for concurrent use.
em, err := opts.EncMode()
// Use EncMode like encoding/json, with same function signatures.
b, err := em.Marshal(v)
// or
encoder := em.NewEncoder(w)
err := encoder.Encode(v)
// NOTE: Both em.Marshal(v) and encoder.Encode(v) use encoding options
// specified during creation of em (encoding mode).
# CBOR Options
Predefined Encoding Options: https://github.com/fxamacker/cbor#predefined-encoding-options
Encoding Options: https://github.com/fxamacker/cbor#encoding-options
Decoding Options: https://github.com/fxamacker/cbor#decoding-options
# Struct Tags
Struct tags like `cbor:"name,omitempty"` and `json:"name,omitempty"` work as expected.
If both struct tags are specified then `cbor` is used.
Struct tags like "keyasint", "toarray", and "omitempty" make it easy to use
very compact formats like COSE and CWT (CBOR Web Tokens) with structs.
For example, "toarray" makes struct fields encode to array elements. And "keyasint"
makes struct fields encode to elements of CBOR map with int keys.
https://raw.githubusercontent.com/fxamacker/images/master/cbor/v2.0.0/cbor_easy_api.png
Struct tags are listed at https://github.com/fxamacker/cbor#struct-tags-1
# Tests and Fuzzing
Over 375 tests are included in this package. Cover-guided fuzzing is handled by
a private fuzzer that replaced fxamacker/cbor-fuzz years ago.
*/
package cbor

1989
vendor/github.com/fxamacker/cbor/v2/encode.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

94
vendor/github.com/fxamacker/cbor/v2/encode_map.go generated vendored Normal file
View File

@ -0,0 +1,94 @@
// Copyright (c) Faye Amacker. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for license information.
//go:build go1.20
package cbor
import (
"bytes"
"reflect"
"sync"
)
type mapKeyValueEncodeFunc struct {
kf, ef encodeFunc
kpool, vpool sync.Pool
}
func (me *mapKeyValueEncodeFunc) encodeKeyValues(e *bytes.Buffer, em *encMode, v reflect.Value, kvs []keyValue) error {
iterk := me.kpool.Get().(*reflect.Value)
defer func() {
iterk.SetZero()
me.kpool.Put(iterk)
}()
iterv := me.vpool.Get().(*reflect.Value)
defer func() {
iterv.SetZero()
me.vpool.Put(iterv)
}()
if kvs == nil {
for i, iter := 0, v.MapRange(); iter.Next(); i++ {
iterk.SetIterKey(iter)
iterv.SetIterValue(iter)
if err := me.kf(e, em, *iterk); err != nil {
return err
}
if err := me.ef(e, em, *iterv); err != nil {
return err
}
}
return nil
}
initial := e.Len()
for i, iter := 0, v.MapRange(); iter.Next(); i++ {
iterk.SetIterKey(iter)
iterv.SetIterValue(iter)
offset := e.Len()
if err := me.kf(e, em, *iterk); err != nil {
return err
}
valueOffset := e.Len()
if err := me.ef(e, em, *iterv); err != nil {
return err
}
kvs[i] = keyValue{
offset: offset - initial,
valueOffset: valueOffset - initial,
nextOffset: e.Len() - initial,
}
}
return nil
}
func getEncodeMapFunc(t reflect.Type) encodeFunc {
kf, _ := getEncodeFunc(t.Key())
ef, _ := getEncodeFunc(t.Elem())
if kf == nil || ef == nil {
return nil
}
mkv := &mapKeyValueEncodeFunc{
kf: kf,
ef: ef,
kpool: sync.Pool{
New: func() interface{} {
rk := reflect.New(t.Key()).Elem()
return &rk
},
},
vpool: sync.Pool{
New: func() interface{} {
rv := reflect.New(t.Elem()).Elem()
return &rv
},
},
}
return mapEncodeFunc{
e: mkv.encodeKeyValues,
}.encode
}

View File

@ -0,0 +1,60 @@
// Copyright (c) Faye Amacker. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for license information.
//go:build !go1.20
package cbor
import (
"bytes"
"reflect"
)
type mapKeyValueEncodeFunc struct {
kf, ef encodeFunc
}
func (me *mapKeyValueEncodeFunc) encodeKeyValues(e *bytes.Buffer, em *encMode, v reflect.Value, kvs []keyValue) error {
if kvs == nil {
for i, iter := 0, v.MapRange(); iter.Next(); i++ {
if err := me.kf(e, em, iter.Key()); err != nil {
return err
}
if err := me.ef(e, em, iter.Value()); err != nil {
return err
}
}
return nil
}
initial := e.Len()
for i, iter := 0, v.MapRange(); iter.Next(); i++ {
offset := e.Len()
if err := me.kf(e, em, iter.Key()); err != nil {
return err
}
valueOffset := e.Len()
if err := me.ef(e, em, iter.Value()); err != nil {
return err
}
kvs[i] = keyValue{
offset: offset - initial,
valueOffset: valueOffset - initial,
nextOffset: e.Len() - initial,
}
}
return nil
}
func getEncodeMapFunc(t reflect.Type) encodeFunc {
kf, _ := getEncodeFunc(t.Key())
ef, _ := getEncodeFunc(t.Elem())
if kf == nil || ef == nil {
return nil
}
mkv := &mapKeyValueEncodeFunc{kf: kf, ef: ef}
return mapEncodeFunc{
e: mkv.encodeKeyValues,
}.encode
}

69
vendor/github.com/fxamacker/cbor/v2/simplevalue.go generated vendored Normal file
View File

@ -0,0 +1,69 @@
package cbor
import (
"errors"
"fmt"
"reflect"
)
// SimpleValue represents CBOR simple value.
// CBOR simple value is:
// - an extension point like CBOR tag.
// - a subset of CBOR major type 7 that isn't floating-point.
// - "identified by a number between 0 and 255, but distinct from that number itself".
// For example, "a simple value 2 is not equivalent to an integer 2" as a CBOR map key.
//
// CBOR simple values identified by 20..23 are: "false", "true" , "null", and "undefined".
// Other CBOR simple values are currently unassigned/reserved by IANA.
type SimpleValue uint8
var (
typeSimpleValue = reflect.TypeOf(SimpleValue(0))
)
// MarshalCBOR encodes SimpleValue as CBOR simple value (major type 7).
func (sv SimpleValue) MarshalCBOR() ([]byte, error) {
// RFC 8949 3.3. Floating-Point Numbers and Values with No Content says:
// "An encoder MUST NOT issue two-byte sequences that start with 0xf8
// (major type 7, additional information 24) and continue with a byte
// less than 0x20 (32 decimal). Such sequences are not well-formed.
// (This implies that an encoder cannot encode false, true, null, or
// undefined in two-byte sequences and that only the one-byte variants
// of these are well-formed; more generally speaking, each simple value
// only has a single representation variant)."
switch {
case sv <= maxSimpleValueInAdditionalInformation:
return []byte{byte(cborTypePrimitives) | byte(sv)}, nil
case sv >= minSimpleValueIn1ByteArgument:
return []byte{byte(cborTypePrimitives) | additionalInformationWith1ByteArgument, byte(sv)}, nil
default:
return nil, &UnsupportedValueError{msg: fmt.Sprintf("SimpleValue(%d)", sv)}
}
}
// UnmarshalCBOR decodes CBOR simple value (major type 7) to SimpleValue.
func (sv *SimpleValue) UnmarshalCBOR(data []byte) error {
if sv == nil {
return errors.New("cbor.SimpleValue: UnmarshalCBOR on nil pointer")
}
d := decoder{data: data, dm: defaultDecMode}
typ, ai, val := d.getHead()
if typ != cborTypePrimitives {
return &UnmarshalTypeError{CBORType: typ.String(), GoType: "SimpleValue"}
}
if ai > additionalInformationWith1ByteArgument {
return &UnmarshalTypeError{CBORType: typ.String(), GoType: "SimpleValue", errorMsg: "not simple values"}
}
// It is safe to cast val to uint8 here because
// - data is already verified to be well-formed CBOR simple value and
// - val is <= math.MaxUint8.
*sv = SimpleValue(val)
return nil
}

277
vendor/github.com/fxamacker/cbor/v2/stream.go generated vendored Normal file
View File

@ -0,0 +1,277 @@
// Copyright (c) Faye Amacker. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for license information.
package cbor
import (
"bytes"
"errors"
"io"
"reflect"
)
// Decoder reads and decodes CBOR values from io.Reader.
type Decoder struct {
r io.Reader
d decoder
buf []byte
off int // next read offset in buf
bytesRead int
}
// NewDecoder returns a new decoder that reads and decodes from r using
// the default decoding options.
func NewDecoder(r io.Reader) *Decoder {
return defaultDecMode.NewDecoder(r)
}
// Decode reads CBOR value and decodes it into the value pointed to by v.
func (dec *Decoder) Decode(v interface{}) error {
_, err := dec.readNext()
if err != nil {
// Return validation error or read error.
return err
}
dec.d.reset(dec.buf[dec.off:])
err = dec.d.value(v)
// Increment dec.off even if decoding err is not nil because
// dec.d.off points to the next CBOR data item if current
// CBOR data item is valid but failed to be decoded into v.
// This allows next CBOR data item to be decoded in next
// call to this function.
dec.off += dec.d.off
dec.bytesRead += dec.d.off
return err
}
// Skip skips to the next CBOR data item (if there is any),
// otherwise it returns error such as io.EOF, io.UnexpectedEOF, etc.
func (dec *Decoder) Skip() error {
n, err := dec.readNext()
if err != nil {
// Return validation error or read error.
return err
}
dec.off += n
dec.bytesRead += n
return nil
}
// NumBytesRead returns the number of bytes read.
func (dec *Decoder) NumBytesRead() int {
return dec.bytesRead
}
// Buffered returns a reader for data remaining in Decoder's buffer.
// Returned reader is valid until the next call to Decode or Skip.
func (dec *Decoder) Buffered() io.Reader {
return bytes.NewReader(dec.buf[dec.off:])
}
// readNext() reads next CBOR data item from Reader to buffer.
// It returns the size of next CBOR data item.
// It also returns validation error or read error if any.
func (dec *Decoder) readNext() (int, error) {
var readErr error
var validErr error
for {
// Process any unread data in dec.buf.
if dec.off < len(dec.buf) {
dec.d.reset(dec.buf[dec.off:])
off := dec.off // Save offset before data validation
validErr = dec.d.wellformed(true, false)
dec.off = off // Restore offset
if validErr == nil {
return dec.d.off, nil
}
if validErr != io.ErrUnexpectedEOF {
return 0, validErr
}
// Process last read error on io.ErrUnexpectedEOF.
if readErr != nil {
if readErr == io.EOF {
// current CBOR data item is incomplete.
return 0, io.ErrUnexpectedEOF
}
return 0, readErr
}
}
// More data is needed and there was no read error.
var n int
for n == 0 {
n, readErr = dec.read()
if n == 0 && readErr != nil {
// No more data can be read and read error is encountered.
// At this point, validErr is either nil or io.ErrUnexpectedEOF.
if readErr == io.EOF {
if validErr == io.ErrUnexpectedEOF {
// current CBOR data item is incomplete.
return 0, io.ErrUnexpectedEOF
}
}
return 0, readErr
}
}
// At this point, dec.buf contains new data from last read (n > 0).
}
}
// read() reads data from Reader to buffer.
// It returns number of bytes read and any read error encountered.
// Postconditions:
// - dec.buf contains previously unread data and new data.
// - dec.off is 0.
func (dec *Decoder) read() (int, error) {
// Grow buf if needed.
const minRead = 512
if cap(dec.buf)-len(dec.buf)+dec.off < minRead {
oldUnreadBuf := dec.buf[dec.off:]
dec.buf = make([]byte, len(dec.buf)-dec.off, 2*cap(dec.buf)+minRead)
dec.overwriteBuf(oldUnreadBuf)
}
// Copy unread data over read data and reset off to 0.
if dec.off > 0 {
dec.overwriteBuf(dec.buf[dec.off:])
}
// Read from reader and reslice buf.
n, err := dec.r.Read(dec.buf[len(dec.buf):cap(dec.buf)])
dec.buf = dec.buf[0 : len(dec.buf)+n]
return n, err
}
func (dec *Decoder) overwriteBuf(newBuf []byte) {
n := copy(dec.buf, newBuf)
dec.buf = dec.buf[:n]
dec.off = 0
}
// Encoder writes CBOR values to io.Writer.
type Encoder struct {
w io.Writer
em *encMode
indefTypes []cborType
}
// NewEncoder returns a new encoder that writes to w using the default encoding options.
func NewEncoder(w io.Writer) *Encoder {
return defaultEncMode.NewEncoder(w)
}
// Encode writes the CBOR encoding of v.
func (enc *Encoder) Encode(v interface{}) error {
if len(enc.indefTypes) > 0 && v != nil {
indefType := enc.indefTypes[len(enc.indefTypes)-1]
if indefType == cborTypeTextString {
k := reflect.TypeOf(v).Kind()
if k != reflect.String {
return errors.New("cbor: cannot encode item type " + k.String() + " for indefinite-length text string")
}
} else if indefType == cborTypeByteString {
t := reflect.TypeOf(v)
k := t.Kind()
if (k != reflect.Array && k != reflect.Slice) || t.Elem().Kind() != reflect.Uint8 {
return errors.New("cbor: cannot encode item type " + k.String() + " for indefinite-length byte string")
}
}
}
buf := getEncodeBuffer()
err := encode(buf, enc.em, reflect.ValueOf(v))
if err == nil {
_, err = enc.w.Write(buf.Bytes())
}
putEncodeBuffer(buf)
return err
}
// StartIndefiniteByteString starts byte string encoding of indefinite length.
// Subsequent calls of (*Encoder).Encode() encodes definite length byte strings
// ("chunks") as one contiguous string until EndIndefinite is called.
func (enc *Encoder) StartIndefiniteByteString() error {
return enc.startIndefinite(cborTypeByteString)
}
// StartIndefiniteTextString starts text string encoding of indefinite length.
// Subsequent calls of (*Encoder).Encode() encodes definite length text strings
// ("chunks") as one contiguous string until EndIndefinite is called.
func (enc *Encoder) StartIndefiniteTextString() error {
return enc.startIndefinite(cborTypeTextString)
}
// StartIndefiniteArray starts array encoding of indefinite length.
// Subsequent calls of (*Encoder).Encode() encodes elements of the array
// until EndIndefinite is called.
func (enc *Encoder) StartIndefiniteArray() error {
return enc.startIndefinite(cborTypeArray)
}
// StartIndefiniteMap starts array encoding of indefinite length.
// Subsequent calls of (*Encoder).Encode() encodes elements of the map
// until EndIndefinite is called.
func (enc *Encoder) StartIndefiniteMap() error {
return enc.startIndefinite(cborTypeMap)
}
// EndIndefinite closes last opened indefinite length value.
func (enc *Encoder) EndIndefinite() error {
if len(enc.indefTypes) == 0 {
return errors.New("cbor: cannot encode \"break\" code outside indefinite length values")
}
_, err := enc.w.Write([]byte{cborBreakFlag})
if err == nil {
enc.indefTypes = enc.indefTypes[:len(enc.indefTypes)-1]
}
return err
}
var cborIndefHeader = map[cborType][]byte{
cborTypeByteString: {cborByteStringWithIndefiniteLengthHead},
cborTypeTextString: {cborTextStringWithIndefiniteLengthHead},
cborTypeArray: {cborArrayWithIndefiniteLengthHead},
cborTypeMap: {cborMapWithIndefiniteLengthHead},
}
func (enc *Encoder) startIndefinite(typ cborType) error {
if enc.em.indefLength == IndefLengthForbidden {
return &IndefiniteLengthError{typ}
}
_, err := enc.w.Write(cborIndefHeader[typ])
if err == nil {
enc.indefTypes = append(enc.indefTypes, typ)
}
return err
}
// RawMessage is a raw encoded CBOR value.
type RawMessage []byte
// MarshalCBOR returns m or CBOR nil if m is nil.
func (m RawMessage) MarshalCBOR() ([]byte, error) {
if len(m) == 0 {
return cborNil, nil
}
return m, nil
}
// UnmarshalCBOR creates a copy of data and saves to *m.
func (m *RawMessage) UnmarshalCBOR(data []byte) error {
if m == nil {
return errors.New("cbor.RawMessage: UnmarshalCBOR on nil pointer")
}
*m = append((*m)[0:0], data...)
return nil
}

260
vendor/github.com/fxamacker/cbor/v2/structfields.go generated vendored Normal file
View File

@ -0,0 +1,260 @@
// Copyright (c) Faye Amacker. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for license information.
package cbor
import (
"reflect"
"sort"
"strings"
)
type field struct {
name string
nameAsInt int64 // used to decoder to match field name with CBOR int
cborName []byte
cborNameByteString []byte // major type 2 name encoding iff cborName has major type 3
idx []int
typ reflect.Type
ef encodeFunc
ief isEmptyFunc
typInfo *typeInfo // used to decoder to reuse type info
tagged bool // used to choose dominant field (at the same level tagged fields dominate untagged fields)
omitEmpty bool // used to skip empty field
keyAsInt bool // used to encode/decode field name as int
}
type fields []*field
// indexFieldSorter sorts fields by field idx at each level, breaking ties with idx depth.
type indexFieldSorter struct {
fields fields
}
func (x *indexFieldSorter) Len() int {
return len(x.fields)
}
func (x *indexFieldSorter) Swap(i, j int) {
x.fields[i], x.fields[j] = x.fields[j], x.fields[i]
}
func (x *indexFieldSorter) Less(i, j int) bool {
iIdx, jIdx := x.fields[i].idx, x.fields[j].idx
for k := 0; k < len(iIdx) && k < len(jIdx); k++ {
if iIdx[k] != jIdx[k] {
return iIdx[k] < jIdx[k]
}
}
return len(iIdx) <= len(jIdx)
}
// nameLevelAndTagFieldSorter sorts fields by field name, idx depth, and presence of tag.
type nameLevelAndTagFieldSorter struct {
fields fields
}
func (x *nameLevelAndTagFieldSorter) Len() int {
return len(x.fields)
}
func (x *nameLevelAndTagFieldSorter) Swap(i, j int) {
x.fields[i], x.fields[j] = x.fields[j], x.fields[i]
}
func (x *nameLevelAndTagFieldSorter) Less(i, j int) bool {
fi, fj := x.fields[i], x.fields[j]
if fi.name != fj.name {
return fi.name < fj.name
}
if len(fi.idx) != len(fj.idx) {
return len(fi.idx) < len(fj.idx)
}
if fi.tagged != fj.tagged {
return fi.tagged
}
return i < j // Field i and j have the same name, depth, and tagged status. Nothing else matters.
}
// getFields returns visible fields of struct type t following visibility rules for JSON encoding.
func getFields(t reflect.Type) (flds fields, structOptions string) {
// Get special field "_" tag options
if f, ok := t.FieldByName("_"); ok {
tag := f.Tag.Get("cbor")
if tag != "-" {
structOptions = tag
}
}
// nTypes contains next level anonymous fields' types and indexes
// (there can be multiple fields of the same type at the same level)
flds, nTypes := appendFields(t, nil, nil, nil)
if len(nTypes) > 0 {
var cTypes map[reflect.Type][][]int // current level anonymous fields' types and indexes
vTypes := map[reflect.Type]bool{t: true} // visited field types at less nested levels
for len(nTypes) > 0 {
cTypes, nTypes = nTypes, nil
for t, idx := range cTypes {
// If there are multiple anonymous fields of the same struct type at the same level, all are ignored.
if len(idx) > 1 {
continue
}
// Anonymous field of the same type at deeper nested level is ignored.
if vTypes[t] {
continue
}
vTypes[t] = true
flds, nTypes = appendFields(t, idx[0], flds, nTypes)
}
}
}
sort.Sort(&nameLevelAndTagFieldSorter{flds})
// Keep visible fields.
j := 0 // index of next unique field
for i := 0; i < len(flds); {
name := flds[i].name
if i == len(flds)-1 || // last field
name != flds[i+1].name || // field i has unique field name
len(flds[i].idx) < len(flds[i+1].idx) || // field i is at a less nested level than field i+1
(flds[i].tagged && !flds[i+1].tagged) { // field i is tagged while field i+1 is not
flds[j] = flds[i]
j++
}
// Skip fields with the same field name.
for i++; i < len(flds) && name == flds[i].name; i++ { //nolint:revive
}
}
if j != len(flds) {
flds = flds[:j]
}
// Sort fields by field index
sort.Sort(&indexFieldSorter{flds})
return flds, structOptions
}
// appendFields appends type t's exportable fields to flds and anonymous struct fields to nTypes .
func appendFields(
t reflect.Type,
idx []int,
flds fields,
nTypes map[reflect.Type][][]int,
) (
_flds fields,
_nTypes map[reflect.Type][][]int,
) {
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
ft := f.Type
for ft.Kind() == reflect.Ptr {
ft = ft.Elem()
}
if !isFieldExportable(f, ft.Kind()) {
continue
}
tag := f.Tag.Get("cbor")
if tag == "" {
tag = f.Tag.Get("json")
}
if tag == "-" {
continue
}
tagged := tag != ""
// Parse field tag options
var tagFieldName string
var omitempty, keyasint bool
for j := 0; tag != ""; j++ {
var token string
idx := strings.IndexByte(tag, ',')
if idx == -1 {
token, tag = tag, ""
} else {
token, tag = tag[:idx], tag[idx+1:]
}
if j == 0 {
tagFieldName = token
} else {
switch token {
case "omitempty":
omitempty = true
case "keyasint":
keyasint = true
}
}
}
fieldName := tagFieldName
if tagFieldName == "" {
fieldName = f.Name
}
fIdx := make([]int, len(idx)+1)
copy(fIdx, idx)
fIdx[len(fIdx)-1] = i
if !f.Anonymous || ft.Kind() != reflect.Struct || tagFieldName != "" {
flds = append(flds, &field{
name: fieldName,
idx: fIdx,
typ: f.Type,
omitEmpty: omitempty,
keyAsInt: keyasint,
tagged: tagged})
} else {
if nTypes == nil {
nTypes = make(map[reflect.Type][][]int)
}
nTypes[ft] = append(nTypes[ft], fIdx)
}
}
return flds, nTypes
}
// isFieldExportable returns true if f is an exportable (regular or anonymous) field or
// a nonexportable anonymous field of struct type.
// Nonexportable anonymous field of struct type can contain exportable fields.
func isFieldExportable(f reflect.StructField, fk reflect.Kind) bool { //nolint:gocritic // ignore hugeParam
exportable := f.PkgPath == ""
return exportable || (f.Anonymous && fk == reflect.Struct)
}
type embeddedFieldNullPtrFunc func(reflect.Value) (reflect.Value, error)
// getFieldValue returns field value of struct v by index. When encountering null pointer
// to anonymous (embedded) struct field, f is called with the last traversed field value.
func getFieldValue(v reflect.Value, idx []int, f embeddedFieldNullPtrFunc) (fv reflect.Value, err error) {
fv = v
for i, n := range idx {
fv = fv.Field(n)
if i < len(idx)-1 {
if fv.Kind() == reflect.Ptr && fv.Type().Elem().Kind() == reflect.Struct {
if fv.IsNil() {
// Null pointer to embedded struct field
fv, err = f(fv)
if err != nil || !fv.IsValid() {
return fv, err
}
}
fv = fv.Elem()
}
}
}
return fv, nil
}

299
vendor/github.com/fxamacker/cbor/v2/tag.go generated vendored Normal file
View File

@ -0,0 +1,299 @@
package cbor
import (
"errors"
"fmt"
"reflect"
"sync"
)
// Tag represents CBOR tag data, including tag number and unmarshaled tag content. Marshaling and
// unmarshaling of tag content is subject to any encode and decode options that would apply to
// enclosed data item if it were to appear outside of a tag.
type Tag struct {
Number uint64
Content interface{}
}
// RawTag represents CBOR tag data, including tag number and raw tag content.
// RawTag implements Unmarshaler and Marshaler interfaces.
type RawTag struct {
Number uint64
Content RawMessage
}
// UnmarshalCBOR sets *t with tag number and raw tag content copied from data.
func (t *RawTag) UnmarshalCBOR(data []byte) error {
if t == nil {
return errors.New("cbor.RawTag: UnmarshalCBOR on nil pointer")
}
// Decoding CBOR null and undefined to cbor.RawTag is no-op.
if len(data) == 1 && (data[0] == 0xf6 || data[0] == 0xf7) {
return nil
}
d := decoder{data: data, dm: defaultDecMode}
// Unmarshal tag number.
typ, _, num := d.getHead()
if typ != cborTypeTag {
return &UnmarshalTypeError{CBORType: typ.String(), GoType: typeRawTag.String()}
}
t.Number = num
// Unmarshal tag content.
c := d.data[d.off:]
t.Content = make([]byte, len(c))
copy(t.Content, c)
return nil
}
// MarshalCBOR returns CBOR encoding of t.
func (t RawTag) MarshalCBOR() ([]byte, error) {
if t.Number == 0 && len(t.Content) == 0 {
// Marshal uninitialized cbor.RawTag
b := make([]byte, len(cborNil))
copy(b, cborNil)
return b, nil
}
e := getEncodeBuffer()
encodeHead(e, byte(cborTypeTag), t.Number)
content := t.Content
if len(content) == 0 {
content = cborNil
}
buf := make([]byte, len(e.Bytes())+len(content))
n := copy(buf, e.Bytes())
copy(buf[n:], content)
putEncodeBuffer(e)
return buf, nil
}
// DecTagMode specifies how decoder handles tag number.
type DecTagMode int
const (
// DecTagIgnored makes decoder ignore tag number (skips if present).
DecTagIgnored DecTagMode = iota
// DecTagOptional makes decoder verify tag number if it's present.
DecTagOptional
// DecTagRequired makes decoder verify tag number and tag number must be present.
DecTagRequired
maxDecTagMode
)
func (dtm DecTagMode) valid() bool {
return dtm >= 0 && dtm < maxDecTagMode
}
// EncTagMode specifies how encoder handles tag number.
type EncTagMode int
const (
// EncTagNone makes encoder not encode tag number.
EncTagNone EncTagMode = iota
// EncTagRequired makes encoder encode tag number.
EncTagRequired
maxEncTagMode
)
func (etm EncTagMode) valid() bool {
return etm >= 0 && etm < maxEncTagMode
}
// TagOptions specifies how encoder and decoder handle tag number.
type TagOptions struct {
DecTag DecTagMode
EncTag EncTagMode
}
// TagSet is an interface to add and remove tag info. It is used by EncMode and DecMode
// to provide CBOR tag support.
type TagSet interface {
// Add adds given tag number(s), content type, and tag options to TagSet.
Add(opts TagOptions, contentType reflect.Type, num uint64, nestedNum ...uint64) error
// Remove removes given tag content type from TagSet.
Remove(contentType reflect.Type)
tagProvider
}
type tagProvider interface {
getTagItemFromType(t reflect.Type) *tagItem
getTypeFromTagNum(num []uint64) reflect.Type
}
type tagItem struct {
num []uint64
cborTagNum []byte
contentType reflect.Type
opts TagOptions
}
func (t *tagItem) equalTagNum(num []uint64) bool {
// Fast path to compare 1 tag number
if len(t.num) == 1 && len(num) == 1 && t.num[0] == num[0] {
return true
}
if len(t.num) != len(num) {
return false
}
for i := 0; i < len(t.num); i++ {
if t.num[i] != num[i] {
return false
}
}
return true
}
type (
tagSet map[reflect.Type]*tagItem
syncTagSet struct {
sync.RWMutex
t tagSet
}
)
func (t tagSet) getTagItemFromType(typ reflect.Type) *tagItem {
return t[typ]
}
func (t tagSet) getTypeFromTagNum(num []uint64) reflect.Type {
for typ, tag := range t {
if tag.equalTagNum(num) {
return typ
}
}
return nil
}
// NewTagSet returns TagSet (safe for concurrency).
func NewTagSet() TagSet {
return &syncTagSet{t: make(map[reflect.Type]*tagItem)}
}
// Add adds given tag number(s), content type, and tag options to TagSet.
func (t *syncTagSet) Add(opts TagOptions, contentType reflect.Type, num uint64, nestedNum ...uint64) error {
if contentType == nil {
return errors.New("cbor: cannot add nil content type to TagSet")
}
for contentType.Kind() == reflect.Ptr {
contentType = contentType.Elem()
}
tag, err := newTagItem(opts, contentType, num, nestedNum...)
if err != nil {
return err
}
t.Lock()
defer t.Unlock()
for typ, ti := range t.t {
if typ == contentType {
return errors.New("cbor: content type " + contentType.String() + " already exists in TagSet")
}
if ti.equalTagNum(tag.num) {
return fmt.Errorf("cbor: tag number %v already exists in TagSet", tag.num)
}
}
t.t[contentType] = tag
return nil
}
// Remove removes given tag content type from TagSet.
func (t *syncTagSet) Remove(contentType reflect.Type) {
for contentType.Kind() == reflect.Ptr {
contentType = contentType.Elem()
}
t.Lock()
delete(t.t, contentType)
t.Unlock()
}
func (t *syncTagSet) getTagItemFromType(typ reflect.Type) *tagItem {
t.RLock()
ti := t.t[typ]
t.RUnlock()
return ti
}
func (t *syncTagSet) getTypeFromTagNum(num []uint64) reflect.Type {
t.RLock()
rt := t.t.getTypeFromTagNum(num)
t.RUnlock()
return rt
}
func newTagItem(opts TagOptions, contentType reflect.Type, num uint64, nestedNum ...uint64) (*tagItem, error) {
if opts.DecTag == DecTagIgnored && opts.EncTag == EncTagNone {
return nil, errors.New("cbor: cannot add tag with DecTagIgnored and EncTagNone options to TagSet")
}
if contentType.PkgPath() == "" || contentType.Kind() == reflect.Interface {
return nil, errors.New("cbor: can only add named types to TagSet, got " + contentType.String())
}
if contentType == typeTime {
return nil, errors.New("cbor: cannot add time.Time to TagSet, use EncOptions.TimeTag and DecOptions.TimeTag instead")
}
if contentType == typeBigInt {
return nil, errors.New("cbor: cannot add big.Int to TagSet, it's built-in and supported automatically")
}
if contentType == typeTag {
return nil, errors.New("cbor: cannot add cbor.Tag to TagSet")
}
if contentType == typeRawTag {
return nil, errors.New("cbor: cannot add cbor.RawTag to TagSet")
}
if num == 0 || num == 1 {
return nil, errors.New("cbor: cannot add tag number 0 or 1 to TagSet, use EncOptions.TimeTag and DecOptions.TimeTag instead")
}
if num == 2 || num == 3 {
return nil, errors.New("cbor: cannot add tag number 2 or 3 to TagSet, it's built-in and supported automatically")
}
if num == tagNumSelfDescribedCBOR {
return nil, errors.New("cbor: cannot add tag number 55799 to TagSet, it's built-in and ignored automatically")
}
te := tagItem{num: []uint64{num}, opts: opts, contentType: contentType}
te.num = append(te.num, nestedNum...)
// Cache encoded tag numbers
e := getEncodeBuffer()
for _, n := range te.num {
encodeHead(e, byte(cborTypeTag), n)
}
te.cborTagNum = make([]byte, e.Len())
copy(te.cborTagNum, e.Bytes())
putEncodeBuffer(e)
return &te, nil
}
var (
typeTag = reflect.TypeOf(Tag{})
typeRawTag = reflect.TypeOf(RawTag{})
)
// WrongTagError describes mismatch between CBOR tag and registered tag.
type WrongTagError struct {
RegisteredType reflect.Type
RegisteredTagNum []uint64
TagNum []uint64
}
func (e *WrongTagError) Error() string {
return fmt.Sprintf("cbor: wrong tag number for %s, got %v, expected %v", e.RegisteredType.String(), e.TagNum, e.RegisteredTagNum)
}

394
vendor/github.com/fxamacker/cbor/v2/valid.go generated vendored Normal file
View File

@ -0,0 +1,394 @@
// Copyright (c) Faye Amacker. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for license information.
package cbor
import (
"encoding/binary"
"errors"
"io"
"math"
"strconv"
"github.com/x448/float16"
)
// SyntaxError is a description of a CBOR syntax error.
type SyntaxError struct {
msg string
}
func (e *SyntaxError) Error() string { return e.msg }
// SemanticError is a description of a CBOR semantic error.
type SemanticError struct {
msg string
}
func (e *SemanticError) Error() string { return e.msg }
// MaxNestedLevelError indicates exceeded max nested level of any combination of CBOR arrays/maps/tags.
type MaxNestedLevelError struct {
maxNestedLevels int
}
func (e *MaxNestedLevelError) Error() string {
return "cbor: exceeded max nested level " + strconv.Itoa(e.maxNestedLevels)
}
// MaxArrayElementsError indicates exceeded max number of elements for CBOR arrays.
type MaxArrayElementsError struct {
maxArrayElements int
}
func (e *MaxArrayElementsError) Error() string {
return "cbor: exceeded max number of elements " + strconv.Itoa(e.maxArrayElements) + " for CBOR array"
}
// MaxMapPairsError indicates exceeded max number of key-value pairs for CBOR maps.
type MaxMapPairsError struct {
maxMapPairs int
}
func (e *MaxMapPairsError) Error() string {
return "cbor: exceeded max number of key-value pairs " + strconv.Itoa(e.maxMapPairs) + " for CBOR map"
}
// IndefiniteLengthError indicates found disallowed indefinite length items.
type IndefiniteLengthError struct {
t cborType
}
func (e *IndefiniteLengthError) Error() string {
return "cbor: indefinite-length " + e.t.String() + " isn't allowed"
}
// TagsMdError indicates found disallowed CBOR tags.
type TagsMdError struct {
}
func (e *TagsMdError) Error() string {
return "cbor: CBOR tag isn't allowed"
}
// ExtraneousDataError indicates found extraneous data following well-formed CBOR data item.
type ExtraneousDataError struct {
numOfBytes int // number of bytes of extraneous data
index int // location of extraneous data
}
func (e *ExtraneousDataError) Error() string {
return "cbor: " + strconv.Itoa(e.numOfBytes) + " bytes of extraneous data starting at index " + strconv.Itoa(e.index)
}
// wellformed checks whether the CBOR data item is well-formed.
// allowExtraData indicates if extraneous data is allowed after the CBOR data item.
// - use allowExtraData = true when using Decoder.Decode()
// - use allowExtraData = false when using Unmarshal()
func (d *decoder) wellformed(allowExtraData bool, checkBuiltinTags bool) error {
if len(d.data) == d.off {
return io.EOF
}
_, err := d.wellformedInternal(0, checkBuiltinTags)
if err == nil {
if !allowExtraData && d.off != len(d.data) {
err = &ExtraneousDataError{len(d.data) - d.off, d.off}
}
}
return err
}
// wellformedInternal checks data's well-formedness and returns max depth and error.
func (d *decoder) wellformedInternal(depth int, checkBuiltinTags bool) (int, error) { //nolint:gocyclo
t, _, val, indefiniteLength, err := d.wellformedHeadWithIndefiniteLengthFlag()
if err != nil {
return 0, err
}
switch t {
case cborTypeByteString, cborTypeTextString:
if indefiniteLength {
if d.dm.indefLength == IndefLengthForbidden {
return 0, &IndefiniteLengthError{t}
}
return d.wellformedIndefiniteString(t, depth, checkBuiltinTags)
}
valInt := int(val)
if valInt < 0 {
// Detect integer overflow
return 0, errors.New("cbor: " + t.String() + " length " + strconv.FormatUint(val, 10) + " is too large, causing integer overflow")
}
if len(d.data)-d.off < valInt { // valInt+off may overflow integer
return 0, io.ErrUnexpectedEOF
}
d.off += valInt
case cborTypeArray, cborTypeMap:
depth++
if depth > d.dm.maxNestedLevels {
return 0, &MaxNestedLevelError{d.dm.maxNestedLevels}
}
if indefiniteLength {
if d.dm.indefLength == IndefLengthForbidden {
return 0, &IndefiniteLengthError{t}
}
return d.wellformedIndefiniteArrayOrMap(t, depth, checkBuiltinTags)
}
valInt := int(val)
if valInt < 0 {
// Detect integer overflow
return 0, errors.New("cbor: " + t.String() + " length " + strconv.FormatUint(val, 10) + " is too large, it would cause integer overflow")
}
if t == cborTypeArray {
if valInt > d.dm.maxArrayElements {
return 0, &MaxArrayElementsError{d.dm.maxArrayElements}
}
} else {
if valInt > d.dm.maxMapPairs {
return 0, &MaxMapPairsError{d.dm.maxMapPairs}
}
}
count := 1
if t == cborTypeMap {
count = 2
}
maxDepth := depth
for j := 0; j < count; j++ {
for i := 0; i < valInt; i++ {
var dpt int
if dpt, err = d.wellformedInternal(depth, checkBuiltinTags); err != nil {
return 0, err
}
if dpt > maxDepth {
maxDepth = dpt // Save max depth
}
}
}
depth = maxDepth
case cborTypeTag:
if d.dm.tagsMd == TagsForbidden {
return 0, &TagsMdError{}
}
tagNum := val
// Scan nested tag numbers to avoid recursion.
for {
if len(d.data) == d.off { // Tag number must be followed by tag content.
return 0, io.ErrUnexpectedEOF
}
if checkBuiltinTags {
err = validBuiltinTag(tagNum, d.data[d.off])
if err != nil {
return 0, err
}
}
if d.dm.bignumTag == BignumTagForbidden && (tagNum == 2 || tagNum == 3) {
return 0, &UnacceptableDataItemError{
CBORType: cborTypeTag.String(),
Message: "bignum",
}
}
if getType(d.data[d.off]) != cborTypeTag {
break
}
if _, _, tagNum, err = d.wellformedHead(); err != nil {
return 0, err
}
depth++
if depth > d.dm.maxNestedLevels {
return 0, &MaxNestedLevelError{d.dm.maxNestedLevels}
}
}
// Check tag content.
return d.wellformedInternal(depth, checkBuiltinTags)
}
return depth, nil
}
// wellformedIndefiniteString checks indefinite length byte/text string's well-formedness and returns max depth and error.
func (d *decoder) wellformedIndefiniteString(t cborType, depth int, checkBuiltinTags bool) (int, error) {
var err error
for {
if len(d.data) == d.off {
return 0, io.ErrUnexpectedEOF
}
if isBreakFlag(d.data[d.off]) {
d.off++
break
}
// Peek ahead to get next type and indefinite length status.
nt, ai := parseInitialByte(d.data[d.off])
if t != nt {
return 0, &SyntaxError{"cbor: wrong element type " + nt.String() + " for indefinite-length " + t.String()}
}
if additionalInformation(ai).isIndefiniteLength() {
return 0, &SyntaxError{"cbor: indefinite-length " + t.String() + " chunk is not definite-length"}
}
if depth, err = d.wellformedInternal(depth, checkBuiltinTags); err != nil {
return 0, err
}
}
return depth, nil
}
// wellformedIndefiniteArrayOrMap checks indefinite length array/map's well-formedness and returns max depth and error.
func (d *decoder) wellformedIndefiniteArrayOrMap(t cborType, depth int, checkBuiltinTags bool) (int, error) {
var err error
maxDepth := depth
i := 0
for {
if len(d.data) == d.off {
return 0, io.ErrUnexpectedEOF
}
if isBreakFlag(d.data[d.off]) {
d.off++
break
}
var dpt int
if dpt, err = d.wellformedInternal(depth, checkBuiltinTags); err != nil {
return 0, err
}
if dpt > maxDepth {
maxDepth = dpt
}
i++
if t == cborTypeArray {
if i > d.dm.maxArrayElements {
return 0, &MaxArrayElementsError{d.dm.maxArrayElements}
}
} else {
if i%2 == 0 && i/2 > d.dm.maxMapPairs {
return 0, &MaxMapPairsError{d.dm.maxMapPairs}
}
}
}
if t == cborTypeMap && i%2 == 1 {
return 0, &SyntaxError{"cbor: unexpected \"break\" code"}
}
return maxDepth, nil
}
func (d *decoder) wellformedHeadWithIndefiniteLengthFlag() (
t cborType,
ai byte,
val uint64,
indefiniteLength bool,
err error,
) {
t, ai, val, err = d.wellformedHead()
if err != nil {
return
}
indefiniteLength = additionalInformation(ai).isIndefiniteLength()
return
}
func (d *decoder) wellformedHead() (t cborType, ai byte, val uint64, err error) {
dataLen := len(d.data) - d.off
if dataLen == 0 {
return 0, 0, 0, io.ErrUnexpectedEOF
}
t, ai = parseInitialByte(d.data[d.off])
val = uint64(ai)
d.off++
dataLen--
if ai <= maxAdditionalInformationWithoutArgument {
return t, ai, val, nil
}
if ai == additionalInformationWith1ByteArgument {
const argumentSize = 1
if dataLen < argumentSize {
return 0, 0, 0, io.ErrUnexpectedEOF
}
val = uint64(d.data[d.off])
d.off++
if t == cborTypePrimitives && val < 32 {
return 0, 0, 0, &SyntaxError{"cbor: invalid simple value " + strconv.Itoa(int(val)) + " for type " + t.String()}
}
return t, ai, val, nil
}
if ai == additionalInformationWith2ByteArgument {
const argumentSize = 2
if dataLen < argumentSize {
return 0, 0, 0, io.ErrUnexpectedEOF
}
val = uint64(binary.BigEndian.Uint16(d.data[d.off : d.off+argumentSize]))
d.off += argumentSize
if t == cborTypePrimitives {
if err := d.acceptableFloat(float64(float16.Frombits(uint16(val)).Float32())); err != nil {
return 0, 0, 0, err
}
}
return t, ai, val, nil
}
if ai == additionalInformationWith4ByteArgument {
const argumentSize = 4
if dataLen < argumentSize {
return 0, 0, 0, io.ErrUnexpectedEOF
}
val = uint64(binary.BigEndian.Uint32(d.data[d.off : d.off+argumentSize]))
d.off += argumentSize
if t == cborTypePrimitives {
if err := d.acceptableFloat(float64(math.Float32frombits(uint32(val)))); err != nil {
return 0, 0, 0, err
}
}
return t, ai, val, nil
}
if ai == additionalInformationWith8ByteArgument {
const argumentSize = 8
if dataLen < argumentSize {
return 0, 0, 0, io.ErrUnexpectedEOF
}
val = binary.BigEndian.Uint64(d.data[d.off : d.off+argumentSize])
d.off += argumentSize
if t == cborTypePrimitives {
if err := d.acceptableFloat(math.Float64frombits(val)); err != nil {
return 0, 0, 0, err
}
}
return t, ai, val, nil
}
if additionalInformation(ai).isIndefiniteLength() {
switch t {
case cborTypePositiveInt, cborTypeNegativeInt, cborTypeTag:
return 0, 0, 0, &SyntaxError{"cbor: invalid additional information " + strconv.Itoa(int(ai)) + " for type " + t.String()}
case cborTypePrimitives: // 0xff (break code) should not be outside wellformedIndefinite().
return 0, 0, 0, &SyntaxError{"cbor: unexpected \"break\" code"}
}
return t, ai, val, nil
}
// ai == 28, 29, 30
return 0, 0, 0, &SyntaxError{"cbor: invalid additional information " + strconv.Itoa(int(ai)) + " for type " + t.String()}
}
func (d *decoder) acceptableFloat(f float64) error {
switch {
case d.dm.nanDec == NaNDecodeForbidden && math.IsNaN(f):
return &UnacceptableDataItemError{
CBORType: cborTypePrimitives.String(),
Message: "floating-point NaN",
}
case d.dm.infDec == InfDecodeForbidden && math.IsInf(f, 0):
return &UnacceptableDataItemError{
CBORType: cborTypePrimitives.String(),
Message: "floating-point infinity",
}
}
return nil
}

View File

@ -341,12 +341,21 @@ type zeroable interface {
// IsZero returns true when the value passed into the function is a zero value.
// This allows for safer checking of interface values.
func IsZero(data interface{}) bool {
v := reflect.ValueOf(data)
// check for nil data
switch v.Kind() {
case reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
if v.IsNil() {
return true
}
}
// check for things that have an IsZero method instead
if vv, ok := data.(zeroable); ok {
return vv.IsZero()
}
// continue with slightly more complex reflection
v := reflect.ValueOf(data)
switch v.Kind() {
case reflect.String:
return v.Len() == 0
@ -358,14 +367,13 @@ func IsZero(data interface{}) bool {
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return v.Float() == 0
case reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
return v.IsNil()
case reflect.Struct, reflect.Array:
return reflect.DeepEqual(data, reflect.Zero(v.Type()).Interface())
case reflect.Invalid:
return true
default:
return false
}
return false
}
// AddInitialisms add additional initialisms

View File

@ -10,9 +10,12 @@ go_library(
"cel.go",
"decls.go",
"env.go",
"folding.go",
"io.go",
"inlining.go",
"library.go",
"macro.go",
"optimizer.go",
"options.go",
"program.go",
"validator.go",
@ -56,7 +59,11 @@ go_test(
"cel_test.go",
"decls_test.go",
"env_test.go",
"folding_test.go",
"io_test.go",
"inlining_test.go",
"optimizer_test.go",
"validator_test.go",
],
data = [
"//cel/testdata:gen_test_fds",
@ -70,6 +77,7 @@ go_test(
"//common/types:go_default_library",
"//common/types/ref:go_default_library",
"//common/types/traits:go_default_library",
"//ext:go_default_library",
"//test:go_default_library",
"//test/proto2pb:go_default_library",
"//test/proto3pb:go_default_library",

View File

@ -353,43 +353,3 @@ func ExprDeclToDeclaration(d *exprpb.Decl) (EnvOption, error) {
return nil, fmt.Errorf("unsupported decl: %v", d)
}
}
func typeValueToKind(tv ref.Type) (Kind, error) {
switch tv {
case types.BoolType:
return BoolKind, nil
case types.DoubleType:
return DoubleKind, nil
case types.IntType:
return IntKind, nil
case types.UintType:
return UintKind, nil
case types.ListType:
return ListKind, nil
case types.MapType:
return MapKind, nil
case types.StringType:
return StringKind, nil
case types.BytesType:
return BytesKind, nil
case types.DurationType:
return DurationKind, nil
case types.TimestampType:
return TimestampKind, nil
case types.NullType:
return NullTypeKind, nil
case types.TypeType:
return TypeKind, nil
default:
switch tv.TypeName() {
case "dyn":
return DynKind, nil
case "google.protobuf.Any":
return AnyKind, nil
case "optional":
return OpaqueKind, nil
default:
return 0, fmt.Errorf("no known conversion for type of %s", tv.TypeName())
}
}
}

View File

@ -38,26 +38,42 @@ type Source = common.Source
// Ast representing the checked or unchecked expression, its source, and related metadata such as
// source position information.
type Ast struct {
expr *exprpb.Expr
info *exprpb.SourceInfo
source Source
refMap map[int64]*celast.ReferenceInfo
typeMap map[int64]*types.Type
source Source
impl *celast.AST
}
// NativeRep converts the AST to a Go-native representation.
func (ast *Ast) NativeRep() *celast.AST {
return ast.impl
}
// Expr returns the proto serializable instance of the parsed/checked expression.
//
// Deprecated: prefer cel.AstToCheckedExpr() or cel.AstToParsedExpr() and call GetExpr()
// the result instead.
func (ast *Ast) Expr() *exprpb.Expr {
return ast.expr
if ast == nil {
return nil
}
pbExpr, _ := celast.ExprToProto(ast.impl.Expr())
return pbExpr
}
// IsChecked returns whether the Ast value has been successfully type-checked.
func (ast *Ast) IsChecked() bool {
return ast.typeMap != nil && len(ast.typeMap) > 0
if ast == nil {
return false
}
return ast.impl.IsChecked()
}
// SourceInfo returns character offset and newline position information about expression elements.
func (ast *Ast) SourceInfo() *exprpb.SourceInfo {
return ast.info
if ast == nil {
return nil
}
pbInfo, _ := celast.SourceInfoToProto(ast.impl.SourceInfo())
return pbInfo
}
// ResultType returns the output type of the expression if the Ast has been type-checked, else
@ -65,9 +81,6 @@ func (ast *Ast) SourceInfo() *exprpb.SourceInfo {
//
// Deprecated: use OutputType
func (ast *Ast) ResultType() *exprpb.Type {
if !ast.IsChecked() {
return chkdecls.Dyn
}
out := ast.OutputType()
t, err := TypeToExprType(out)
if err != nil {
@ -79,16 +92,18 @@ func (ast *Ast) ResultType() *exprpb.Type {
// OutputType returns the output type of the expression if the Ast has been type-checked, else
// returns cel.DynType as the parse step cannot infer types.
func (ast *Ast) OutputType() *Type {
t, found := ast.typeMap[ast.expr.GetId()]
if !found {
return DynType
if ast == nil {
return types.ErrorType
}
return t
return ast.impl.GetType(ast.impl.Expr().ID())
}
// Source returns a view of the input used to create the Ast. This source may be complete or
// constructed from the SourceInfo.
func (ast *Ast) Source() Source {
if ast == nil {
return nil
}
return ast.source
}
@ -198,29 +213,28 @@ func NewCustomEnv(opts ...EnvOption) (*Env, error) {
// It is possible to have both non-nil Ast and Issues values returned from this call: however,
// the mere presence of an Ast does not imply that it is valid for use.
func (e *Env) Check(ast *Ast) (*Ast, *Issues) {
// Note, errors aren't currently possible on the Ast to ParsedExpr conversion.
pe, _ := AstToParsedExpr(ast)
// Construct the internal checker env, erroring if there is an issue adding the declarations.
chk, err := e.initChecker()
if err != nil {
errs := common.NewErrors(ast.Source())
errs.ReportError(common.NoLocation, err.Error())
return nil, NewIssuesWithSourceInfo(errs, ast.SourceInfo())
return nil, NewIssuesWithSourceInfo(errs, ast.impl.SourceInfo())
}
res, errs := checker.Check(pe, ast.Source(), chk)
checked, errs := checker.Check(ast.impl, ast.Source(), chk)
if len(errs.GetErrors()) > 0 {
return nil, NewIssuesWithSourceInfo(errs, ast.SourceInfo())
return nil, NewIssuesWithSourceInfo(errs, ast.impl.SourceInfo())
}
// Manually create the Ast to ensure that the Ast source information (which may be more
// detailed than the information provided by Check), is returned to the caller.
ast = &Ast{
source: ast.Source(),
expr: res.Expr,
info: res.SourceInfo,
refMap: res.ReferenceMap,
typeMap: res.TypeMap}
source: ast.Source(),
impl: checked}
// Avoid creating a validator config if it's not needed.
if len(e.validators) == 0 {
return ast, nil
}
// Generate a validator configuration from the set of configured validators.
vConfig := newValidatorConfig()
@ -230,9 +244,9 @@ func (e *Env) Check(ast *Ast) (*Ast, *Issues) {
}
}
// Apply additional validators on the type-checked result.
iss := NewIssuesWithSourceInfo(errs, ast.SourceInfo())
iss := NewIssuesWithSourceInfo(errs, ast.impl.SourceInfo())
for _, v := range e.validators {
v.Validate(e, vConfig, res, iss)
v.Validate(e, vConfig, checked, iss)
}
if iss.Err() != nil {
return nil, iss
@ -429,16 +443,11 @@ func (e *Env) Parse(txt string) (*Ast, *Issues) {
// It is possible to have both non-nil Ast and Issues values returned from this call; however,
// the mere presence of an Ast does not imply that it is valid for use.
func (e *Env) ParseSource(src Source) (*Ast, *Issues) {
res, errs := e.prsr.Parse(src)
parsed, errs := e.prsr.Parse(src)
if len(errs.GetErrors()) > 0 {
return nil, &Issues{errs: errs}
}
// Manually create the Ast to ensure that the text source information is propagated on
// subsequent calls to Check.
return &Ast{
source: src,
expr: res.GetExpr(),
info: res.GetSourceInfo()}, nil
return &Ast{source: src, impl: parsed}, nil
}
// Program generates an evaluable instance of the Ast within the environment (Env).
@ -534,8 +543,9 @@ func (e *Env) PartialVars(vars any) (interpreter.PartialActivation, error) {
// TODO: Consider adding an option to generate a Program.Residual to avoid round-tripping to an
// Ast format and then Program again.
func (e *Env) ResidualAst(a *Ast, details *EvalDetails) (*Ast, error) {
pruned := interpreter.PruneAst(a.Expr(), a.SourceInfo().GetMacroCalls(), details.State())
expr, err := AstToString(ParsedExprToAst(pruned))
pruned := interpreter.PruneAst(a.impl.Expr(), a.impl.SourceInfo().MacroCalls(), details.State())
newAST := &Ast{source: a.Source(), impl: pruned}
expr, err := AstToString(newAST)
if err != nil {
return nil, err
}
@ -556,16 +566,10 @@ func (e *Env) ResidualAst(a *Ast, details *EvalDetails) (*Ast, error) {
// EstimateCost estimates the cost of a type checked CEL expression using the length estimates of input data and
// extension functions provided by estimator.
func (e *Env) EstimateCost(ast *Ast, estimator checker.CostEstimator, opts ...checker.CostOption) (checker.CostEstimate, error) {
checked := &celast.CheckedAST{
Expr: ast.Expr(),
SourceInfo: ast.SourceInfo(),
TypeMap: ast.typeMap,
ReferenceMap: ast.refMap,
}
extendedOpts := make([]checker.CostOption, 0, len(e.costOptions))
extendedOpts = append(extendedOpts, opts...)
extendedOpts = append(extendedOpts, e.costOptions...)
return checker.Cost(checked, estimator, extendedOpts...)
return checker.Cost(ast.impl, estimator, extendedOpts...)
}
// configure applies a series of EnvOptions to the current environment.
@ -707,7 +711,7 @@ type Error = common.Error
// Note: in the future, non-fatal warnings and notices may be inspectable via the Issues struct.
type Issues struct {
errs *common.Errors
info *exprpb.SourceInfo
info *celast.SourceInfo
}
// NewIssues returns an Issues struct from a common.Errors object.
@ -718,7 +722,7 @@ func NewIssues(errs *common.Errors) *Issues {
// NewIssuesWithSourceInfo returns an Issues struct from a common.Errors object with SourceInfo metatata
// which can be used with the `ReportErrorAtID` method for additional error reports within the context
// information that's inferred from an expression id.
func NewIssuesWithSourceInfo(errs *common.Errors, info *exprpb.SourceInfo) *Issues {
func NewIssuesWithSourceInfo(errs *common.Errors, info *celast.SourceInfo) *Issues {
return &Issues{
errs: errs,
info: info,
@ -768,30 +772,7 @@ func (i *Issues) String() string {
// The source metadata for the expression at `id`, if present, is attached to the error report.
// To ensure that source metadata is attached to error reports, use NewIssuesWithSourceInfo.
func (i *Issues) ReportErrorAtID(id int64, message string, args ...any) {
i.errs.ReportErrorAtID(id, locationByID(id, i.info), message, args...)
}
// locationByID returns a common.Location given an expression id.
//
// TODO: move this functionality into the native SourceInfo and an overhaul of the common.Source
// as this implementation relies on the abstractions present in the protobuf SourceInfo object,
// and is replicated in the checker.
func locationByID(id int64, sourceInfo *exprpb.SourceInfo) common.Location {
positions := sourceInfo.GetPositions()
var line = 1
if offset, found := positions[id]; found {
col := int(offset)
for _, lineOffset := range sourceInfo.GetLineOffsets() {
if lineOffset < offset {
line++
col = int(offset - lineOffset)
} else {
break
}
}
return common.NewLocation(line, col)
}
return common.NoLocation
i.errs.ReportErrorAtID(id, i.info.GetStartLocation(id), message, args...)
}
// getStdEnv lazy initializes the CEL standard environment.
@ -822,6 +803,13 @@ func (p *interopCELTypeProvider) FindStructType(typeName string) (*types.Type, b
return nil, false
}
// FindStructFieldNames returns an empty set of field for the interop provider.
//
// To inspect the field names, migrate to a `types.Provider` implementation.
func (p *interopCELTypeProvider) FindStructFieldNames(typeName string) ([]string, bool) {
return []string{}, false
}
// FindStructFieldType returns a types.FieldType instance for the given fully-qualified typeName and field
// name, if one exists.
//

Some files were not shown because too many files have changed in this diff Show More