ceph-csi/vendor/github.com/google/cel-go/ext/math.go

902 lines
26 KiB
Go
Raw Normal View History

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ext
import (
"fmt"
"math"
"strings"
"github.com/google/cel-go/cel"
"github.com/google/cel-go/common/ast"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
)
// Math returns a cel.EnvOption to configure namespaced math helper macros and
// functions.
//
// Note, all macros use the 'math' namespace; however, at the time of macro
// expansion the namespace looks just like any other identifier. If you are
// currently using a variable named 'math', the macro will likely work just as
// intended; however, there is some chance for collision.
//
// # Math.Greatest
//
// Returns the greatest valued number present in the arguments to the macro.
//
// Greatest is a variable argument count macro which must take at least one
// argument. Simple numeric and list literals are supported as valid argument
// types; however, other literals will be flagged as errors during macro
// expansion. If the argument expression does not resolve to a numeric or
// list(numeric) type during type-checking, or during runtime then an error
// will be produced. If a list argument is empty, this too will produce an
// error.
//
// math.greatest(<arg>, ...) -> <double|int|uint>
//
// Examples:
//
// math.greatest(1) // 1
// math.greatest(1u, 2u) // 2u
// math.greatest(-42.0, -21.5, -100.0) // -21.5
// math.greatest([-42.0, -21.5, -100.0]) // -21.5
// math.greatest(numbers) // numbers must be list(numeric)
//
// math.greatest() // parse error
// math.greatest('string') // parse error
// math.greatest(a, b) // check-time error if a or b is non-numeric
// math.greatest(dyn('string')) // runtime error
//
// # Math.Least
//
// Returns the least valued number present in the arguments to the macro.
//
// Least is a variable argument count macro which must take at least one
// argument. Simple numeric and list literals are supported as valid argument
// types; however, other literals will be flagged as errors during macro
// expansion. If the argument expression does not resolve to a numeric or
// list(numeric) type during type-checking, or during runtime then an error
// will be produced. If a list argument is empty, this too will produce an
// error.
//
// math.least(<arg>, ...) -> <double|int|uint>
//
// Examples:
//
// math.least(1) // 1
// math.least(1u, 2u) // 1u
// math.least(-42.0, -21.5, -100.0) // -100.0
// math.least([-42.0, -21.5, -100.0]) // -100.0
// math.least(numbers) // numbers must be list(numeric)
//
// math.least() // parse error
// math.least('string') // parse error
// math.least(a, b) // check-time error if a or b is non-numeric
// math.least(dyn('string')) // runtime error
//
// # Math.BitOr
//
// Introduced at version: 1
//
// Performs a bitwise-OR operation over two int or uint values.
//
// math.bitOr(<int>, <int>) -> <int>
// math.bitOr(<uint>, <uint>) -> <uint>
//
// Examples:
//
// math.bitOr(1u, 2u) // returns 3u
// math.bitOr(-2, -4) // returns -2
//
// # Math.BitAnd
//
// Introduced at version: 1
//
// Performs a bitwise-AND operation over two int or uint values.
//
// math.bitAnd(<int>, <int>) -> <int>
// math.bitAnd(<uint>, <uint>) -> <uint>
//
// Examples:
//
// math.bitAnd(3u, 2u) // return 2u
// math.bitAnd(3, 5) // returns 3
// math.bitAnd(-3, -5) // returns -7
//
// # Math.BitXor
//
// Introduced at version: 1
//
// math.bitXor(<int>, <int>) -> <int>
// math.bitXor(<uint>, <uint>) -> <uint>
//
// Performs a bitwise-XOR operation over two int or uint values.
//
// Examples:
//
// math.bitXor(3u, 5u) // returns 6u
// math.bitXor(1, 3) // returns 2
//
// # Math.BitNot
//
// Introduced at version: 1
//
// Function which accepts a single int or uint and performs a bitwise-NOT
// ones-complement of the given binary value.
//
// math.bitNot(<int>) -> <int>
// math.bitNot(<uint>) -> <uint>
//
// Examples
//
// math.bitNot(1) // returns -1
// math.bitNot(-1) // return 0
// math.bitNot(0u) // returns 18446744073709551615u
//
// # Math.BitShiftLeft
//
// Introduced at version: 1
//
// Perform a left shift of bits on the first parameter, by the amount of bits
// specified in the second parameter. The first parameter is either a uint or
// an int. The second parameter must be an int.
//
// When the second parameter is 64 or greater, 0 will be always be returned
// since the number of bits shifted is greater than or equal to the total bit
// length of the number being shifted. Negative valued bit shifts will result
// in a runtime error.
//
// math.bitShiftLeft(<int>, <int>) -> <int>
// math.bitShiftLeft(<uint>, <int>) -> <uint>
//
// Examples
//
// math.bitShiftLeft(1, 2) // returns 4
// math.bitShiftLeft(-1, 2) // returns -4
// math.bitShiftLeft(1u, 2) // return 4u
// math.bitShiftLeft(1u, 200) // returns 0u
//
// # Math.BitShiftRight
//
// Introduced at version: 1
//
// Perform a right shift of bits on the first parameter, by the amount of bits
// specified in the second parameter. The first parameter is either a uint or
// an int. The second parameter must be an int.
//
// When the second parameter is 64 or greater, 0 will always be returned since
// the number of bits shifted is greater than or equal to the total bit length
// of the number being shifted. Negative valued bit shifts will result in a
// runtime error.
//
// The sign bit extension will not be preserved for this operation: vacant bits
// on the left are filled with 0.
//
// math.bitShiftRight(<int>, <int>) -> <int>
// math.bitShiftRight(<uint>, <int>) -> <uint>
//
// Examples
//
// math.bitShiftRight(1024, 2) // returns 256
// math.bitShiftRight(1024u, 2) // returns 256u
// math.bitShiftRight(1024u, 64) // returns 0u
//
// # Math.Ceil
//
// Introduced at version: 1
//
// Compute the ceiling of a double value.
//
// math.ceil(<double>) -> <double>
//
// Examples:
//
// math.ceil(1.2) // returns 2.0
// math.ceil(-1.2) // returns -1.0
//
// # Math.Floor
//
// Introduced at version: 1
//
// Compute the floor of a double value.
//
// math.floor(<double>) -> <double>
//
// Examples:
//
// math.floor(1.2) // returns 1.0
// math.floor(-1.2) // returns -2.0
//
// # Math.Round
//
// Introduced at version: 1
//
// Rounds the double value to the nearest whole number with ties rounding away
// from zero, e.g. 1.5 -> 2.0, -1.5 -> -2.0.
//
// math.round(<double>) -> <double>
//
// Examples:
//
// math.round(1.2) // returns 1.0
// math.round(1.5) // returns 2.0
// math.round(-1.5) // returns -2.0
//
// # Math.Trunc
//
// Introduced at version: 1
//
// Truncates the fractional portion of the double value.
//
// math.trunc(<double>) -> <double>
//
// Examples:
//
// math.trunc(-1.3) // returns -1.0
// math.trunc(1.3) // returns 1.0
//
// # Math.Abs
//
// Introduced at version: 1
//
// Returns the absolute value of the numeric type provided as input. If the
// value is NaN, the output is NaN. If the input is int64 min, the function
// will result in an overflow error.
//
// math.abs(<double>) -> <double>
// math.abs(<int>) -> <int>
// math.abs(<uint>) -> <uint>
//
// Examples:
//
// math.abs(-1) // returns 1
// math.abs(1) // returns 1
// math.abs(-9223372036854775808) // overflow error
//
// # Math.Sign
//
// Introduced at version: 1
//
// Returns the sign of the numeric type, either -1, 0, 1 as an int, double, or
// uint depending on the overload. For floating point values, if NaN is
// provided as input, the output is also NaN. The implementation does not
// differentiate between positive and negative zero.
//
// math.sign(<double>) -> <double>
// math.sign(<int>) -> <int>
// math.sign(<uint>) -> <uint>
//
// Examples:
//
// math.sign(-42) // returns -1
// math.sign(0) // returns 0
// math.sign(42) // returns 1
//
// # Math.IsInf
//
// Introduced at version: 1
//
// Returns true if the input double value is -Inf or +Inf.
//
// math.isInf(<double>) -> <bool>
//
// Examples:
//
// math.isInf(1.0/0.0) // returns true
// math.isInf(1.2) // returns false
//
// # Math.IsNaN
//
// Introduced at version: 1
//
// Returns true if the input double value is NaN, false otherwise.
//
// math.isNaN(<double>) -> <bool>
//
// Examples:
//
// math.isNaN(0.0/0.0) // returns true
// math.isNaN(1.2) // returns false
//
// # Math.IsFinite
//
// Introduced at version: 1
//
// Returns true if the value is a finite number. Equivalent in behavior to:
// !math.isNaN(double) && !math.isInf(double)
//
// math.isFinite(<double>) -> <bool>
//
// Examples:
//
// math.isFinite(0.0/0.0) // returns false
// math.isFinite(1.2) // returns true
func Math(options ...MathOption) cel.EnvOption {
m := &mathLib{version: math.MaxUint32}
for _, o := range options {
m = o(m)
}
return cel.Lib(m)
}
const (
mathNamespace = "math"
leastMacro = "least"
greatestMacro = "greatest"
// Min-max functions
minFunc = "math.@min"
maxFunc = "math.@max"
// Rounding functions
ceilFunc = "math.ceil"
floorFunc = "math.floor"
roundFunc = "math.round"
truncFunc = "math.trunc"
// Floating point helper functions
isInfFunc = "math.isInf"
isNanFunc = "math.isNaN"
isFiniteFunc = "math.isFinite"
// Signedness functions
absFunc = "math.abs"
signFunc = "math.sign"
// Bitwise functions
bitAndFunc = "math.bitAnd"
bitOrFunc = "math.bitOr"
bitXorFunc = "math.bitXor"
bitNotFunc = "math.bitNot"
bitShiftLeftFunc = "math.bitShiftLeft"
bitShiftRightFunc = "math.bitShiftRight"
)
var (
errIntOverflow = types.NewErr("integer overflow")
)
// MathOption declares a functional operator for configuring math extensions.
type MathOption func(*mathLib) *mathLib
// MathVersion sets the library version for math extensions.
func MathVersion(version uint32) MathOption {
return func(lib *mathLib) *mathLib {
lib.version = version
return lib
}
}
type mathLib struct {
version uint32
}
// LibraryName implements the SingletonLibrary interface method.
func (*mathLib) LibraryName() string {
return "cel.lib.ext.math"
}
// CompileOptions implements the Library interface method.
func (lib *mathLib) CompileOptions() []cel.EnvOption {
opts := []cel.EnvOption{
cel.Macros(
// math.least(num, ...)
cel.ReceiverVarArgMacro(leastMacro, mathLeast),
// math.greatest(num, ...)
cel.ReceiverVarArgMacro(greatestMacro, mathGreatest),
),
cel.Function(minFunc,
cel.Overload("math_@min_double", []*cel.Type{cel.DoubleType}, cel.DoubleType,
cel.UnaryBinding(identity)),
cel.Overload("math_@min_int", []*cel.Type{cel.IntType}, cel.IntType,
cel.UnaryBinding(identity)),
cel.Overload("math_@min_uint", []*cel.Type{cel.UintType}, cel.UintType,
cel.UnaryBinding(identity)),
cel.Overload("math_@min_double_double", []*cel.Type{cel.DoubleType, cel.DoubleType}, cel.DoubleType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_int_int", []*cel.Type{cel.IntType, cel.IntType}, cel.IntType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_uint_uint", []*cel.Type{cel.UintType, cel.UintType}, cel.UintType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_int_uint", []*cel.Type{cel.IntType, cel.UintType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_int_double", []*cel.Type{cel.IntType, cel.DoubleType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_double_int", []*cel.Type{cel.DoubleType, cel.IntType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_double_uint", []*cel.Type{cel.DoubleType, cel.UintType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_uint_int", []*cel.Type{cel.UintType, cel.IntType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_uint_double", []*cel.Type{cel.UintType, cel.DoubleType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_list_double", []*cel.Type{cel.ListType(cel.DoubleType)}, cel.DoubleType,
cel.UnaryBinding(minList)),
cel.Overload("math_@min_list_int", []*cel.Type{cel.ListType(cel.IntType)}, cel.IntType,
cel.UnaryBinding(minList)),
cel.Overload("math_@min_list_uint", []*cel.Type{cel.ListType(cel.UintType)}, cel.UintType,
cel.UnaryBinding(minList)),
),
cel.Function(maxFunc,
cel.Overload("math_@max_double", []*cel.Type{cel.DoubleType}, cel.DoubleType,
cel.UnaryBinding(identity)),
cel.Overload("math_@max_int", []*cel.Type{cel.IntType}, cel.IntType,
cel.UnaryBinding(identity)),
cel.Overload("math_@max_uint", []*cel.Type{cel.UintType}, cel.UintType,
cel.UnaryBinding(identity)),
cel.Overload("math_@max_double_double", []*cel.Type{cel.DoubleType, cel.DoubleType}, cel.DoubleType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_int_int", []*cel.Type{cel.IntType, cel.IntType}, cel.IntType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_uint_uint", []*cel.Type{cel.UintType, cel.UintType}, cel.UintType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_int_uint", []*cel.Type{cel.IntType, cel.UintType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_int_double", []*cel.Type{cel.IntType, cel.DoubleType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_double_int", []*cel.Type{cel.DoubleType, cel.IntType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_double_uint", []*cel.Type{cel.DoubleType, cel.UintType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_uint_int", []*cel.Type{cel.UintType, cel.IntType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_uint_double", []*cel.Type{cel.UintType, cel.DoubleType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_list_double", []*cel.Type{cel.ListType(cel.DoubleType)}, cel.DoubleType,
cel.UnaryBinding(maxList)),
cel.Overload("math_@max_list_int", []*cel.Type{cel.ListType(cel.IntType)}, cel.IntType,
cel.UnaryBinding(maxList)),
cel.Overload("math_@max_list_uint", []*cel.Type{cel.ListType(cel.UintType)}, cel.UintType,
cel.UnaryBinding(maxList)),
),
}
if lib.version >= 1 {
opts = append(opts,
// Rounding function declarations
cel.Function(ceilFunc,
cel.Overload("math_ceil_double", []*cel.Type{cel.DoubleType}, cel.DoubleType,
cel.UnaryBinding(ceil))),
cel.Function(floorFunc,
cel.Overload("math_floor_double", []*cel.Type{cel.DoubleType}, cel.DoubleType,
cel.UnaryBinding(floor))),
cel.Function(roundFunc,
cel.Overload("math_round_double", []*cel.Type{cel.DoubleType}, cel.DoubleType,
cel.UnaryBinding(round))),
cel.Function(truncFunc,
cel.Overload("math_trunc_double", []*cel.Type{cel.DoubleType}, cel.DoubleType,
cel.UnaryBinding(trunc))),
// Floating point helpers
cel.Function(isInfFunc,
cel.Overload("math_isInf_double", []*cel.Type{cel.DoubleType}, cel.BoolType,
cel.UnaryBinding(isInf))),
cel.Function(isNanFunc,
cel.Overload("math_isNaN_double", []*cel.Type{cel.DoubleType}, cel.BoolType,
cel.UnaryBinding(isNaN))),
cel.Function(isFiniteFunc,
cel.Overload("math_isFinite_double", []*cel.Type{cel.DoubleType}, cel.BoolType,
cel.UnaryBinding(isFinite))),
// Signedness functions
cel.Function(absFunc,
cel.Overload("math_abs_double", []*cel.Type{cel.DoubleType}, cel.DoubleType,
cel.UnaryBinding(absDouble)),
cel.Overload("math_abs_int", []*cel.Type{cel.IntType}, cel.IntType,
cel.UnaryBinding(absInt)),
cel.Overload("math_abs_uint", []*cel.Type{cel.UintType}, cel.UintType,
cel.UnaryBinding(identity)),
),
cel.Function(signFunc,
cel.Overload("math_sign_double", []*cel.Type{cel.DoubleType}, cel.DoubleType,
cel.UnaryBinding(sign)),
cel.Overload("math_sign_int", []*cel.Type{cel.IntType}, cel.IntType,
cel.UnaryBinding(sign)),
cel.Overload("math_sign_uint", []*cel.Type{cel.UintType}, cel.UintType,
cel.UnaryBinding(sign)),
),
// Bitwise operator declarations
cel.Function(bitAndFunc,
cel.Overload("math_bitAnd_int_int", []*cel.Type{cel.IntType, cel.IntType}, cel.IntType,
cel.BinaryBinding(bitAndPairInt)),
cel.Overload("math_bitAnd_uint_uint", []*cel.Type{cel.UintType, cel.UintType}, cel.UintType,
cel.BinaryBinding(bitAndPairUint)),
),
cel.Function(bitOrFunc,
cel.Overload("math_bitOr_int_int", []*cel.Type{cel.IntType, cel.IntType}, cel.IntType,
cel.BinaryBinding(bitOrPairInt)),
cel.Overload("math_bitOr_uint_uint", []*cel.Type{cel.UintType, cel.UintType}, cel.UintType,
cel.BinaryBinding(bitOrPairUint)),
),
cel.Function(bitXorFunc,
cel.Overload("math_bitXor_int_int", []*cel.Type{cel.IntType, cel.IntType}, cel.IntType,
cel.BinaryBinding(bitXorPairInt)),
cel.Overload("math_bitXor_uint_uint", []*cel.Type{cel.UintType, cel.UintType}, cel.UintType,
cel.BinaryBinding(bitXorPairUint)),
),
cel.Function(bitNotFunc,
cel.Overload("math_bitNot_int_int", []*cel.Type{cel.IntType}, cel.IntType,
cel.UnaryBinding(bitNotInt)),
cel.Overload("math_bitNot_uint_uint", []*cel.Type{cel.UintType}, cel.UintType,
cel.UnaryBinding(bitNotUint)),
),
cel.Function(bitShiftLeftFunc,
cel.Overload("math_bitShiftLeft_int_int", []*cel.Type{cel.IntType, cel.IntType}, cel.IntType,
cel.BinaryBinding(bitShiftLeftIntInt)),
cel.Overload("math_bitShiftLeft_uint_int", []*cel.Type{cel.UintType, cel.IntType}, cel.UintType,
cel.BinaryBinding(bitShiftLeftUintInt)),
),
cel.Function(bitShiftRightFunc,
cel.Overload("math_bitShiftRight_int_int", []*cel.Type{cel.IntType, cel.IntType}, cel.IntType,
cel.BinaryBinding(bitShiftRightIntInt)),
cel.Overload("math_bitShiftRight_uint_int", []*cel.Type{cel.UintType, cel.IntType}, cel.UintType,
cel.BinaryBinding(bitShiftRightUintInt)),
),
)
}
return opts
}
// ProgramOptions implements the Library interface method.
func (*mathLib) ProgramOptions() []cel.ProgramOption {
return []cel.ProgramOption{}
}
func mathLeast(meh cel.MacroExprFactory, target ast.Expr, args []ast.Expr) (ast.Expr, *cel.Error) {
if !macroTargetMatchesNamespace(mathNamespace, target) {
return nil, nil
}
switch len(args) {
case 0:
return nil, meh.NewError(target.ID(), "math.least() requires at least one argument")
case 1:
if isListLiteralWithNumericArgs(args[0]) || isNumericArgType(args[0]) {
return meh.NewCall(minFunc, args[0]), nil
}
return nil, meh.NewError(args[0].ID(), "math.least() invalid single argument value")
case 2:
err := checkInvalidArgs(meh, "math.least()", args)
if err != nil {
return nil, err
}
return meh.NewCall(minFunc, args...), nil
default:
err := checkInvalidArgs(meh, "math.least()", args)
if err != nil {
return nil, err
}
return meh.NewCall(minFunc, meh.NewList(args...)), nil
}
}
func mathGreatest(mef cel.MacroExprFactory, target ast.Expr, args []ast.Expr) (ast.Expr, *cel.Error) {
if !macroTargetMatchesNamespace(mathNamespace, target) {
return nil, nil
}
switch len(args) {
case 0:
return nil, mef.NewError(target.ID(), "math.greatest() requires at least one argument")
case 1:
if isListLiteralWithNumericArgs(args[0]) || isNumericArgType(args[0]) {
return mef.NewCall(maxFunc, args[0]), nil
}
return nil, mef.NewError(args[0].ID(), "math.greatest() invalid single argument value")
case 2:
err := checkInvalidArgs(mef, "math.greatest()", args)
if err != nil {
return nil, err
}
return mef.NewCall(maxFunc, args...), nil
default:
err := checkInvalidArgs(mef, "math.greatest()", args)
if err != nil {
return nil, err
}
return mef.NewCall(maxFunc, mef.NewList(args...)), nil
}
}
func identity(val ref.Val) ref.Val {
return val
}
func ceil(val ref.Val) ref.Val {
v := val.(types.Double)
return types.Double(math.Ceil(float64(v)))
}
func floor(val ref.Val) ref.Val {
v := val.(types.Double)
return types.Double(math.Floor(float64(v)))
}
func round(val ref.Val) ref.Val {
v := val.(types.Double)
return types.Double(math.Round(float64(v)))
}
func trunc(val ref.Val) ref.Val {
v := val.(types.Double)
return types.Double(math.Trunc(float64(v)))
}
func isInf(val ref.Val) ref.Val {
v := val.(types.Double)
return types.Bool(math.IsInf(float64(v), 0))
}
func isFinite(val ref.Val) ref.Val {
v := float64(val.(types.Double))
return types.Bool(!math.IsInf(v, 0) && !math.IsNaN(v))
}
func isNaN(val ref.Val) ref.Val {
v := val.(types.Double)
return types.Bool(math.IsNaN(float64(v)))
}
func absDouble(val ref.Val) ref.Val {
v := float64(val.(types.Double))
return types.Double(math.Abs(v))
}
func absInt(val ref.Val) ref.Val {
v := int64(val.(types.Int))
if v == math.MinInt64 {
return errIntOverflow
}
if v >= 0 {
return val
}
return -types.Int(v)
}
func sign(val ref.Val) ref.Val {
switch v := val.(type) {
case types.Double:
if isNaN(v) == types.True {
return v
}
zero := types.Double(0)
if v > zero {
return types.Double(1)
}
if v < zero {
return types.Double(-1)
}
return zero
case types.Int:
return v.Compare(types.IntZero)
case types.Uint:
if v == types.Uint(0) {
return types.Uint(0)
}
return types.Uint(1)
default:
return maybeSuffixError(val, "math.sign")
}
}
func bitAndPairInt(first, second ref.Val) ref.Val {
l := first.(types.Int)
r := second.(types.Int)
return l & r
}
func bitAndPairUint(first, second ref.Val) ref.Val {
l := first.(types.Uint)
r := second.(types.Uint)
return l & r
}
func bitOrPairInt(first, second ref.Val) ref.Val {
l := first.(types.Int)
r := second.(types.Int)
return l | r
}
func bitOrPairUint(first, second ref.Val) ref.Val {
l := first.(types.Uint)
r := second.(types.Uint)
return l | r
}
func bitXorPairInt(first, second ref.Val) ref.Val {
l := first.(types.Int)
r := second.(types.Int)
return l ^ r
}
func bitXorPairUint(first, second ref.Val) ref.Val {
l := first.(types.Uint)
r := second.(types.Uint)
return l ^ r
}
func bitNotInt(value ref.Val) ref.Val {
v := value.(types.Int)
return ^v
}
func bitNotUint(value ref.Val) ref.Val {
v := value.(types.Uint)
return ^v
}
func bitShiftLeftIntInt(value, bits ref.Val) ref.Val {
v := value.(types.Int)
bs := bits.(types.Int)
if bs < types.IntZero {
return types.NewErr("math.bitShiftLeft() negative offset: %d", bs)
}
return v << bs
}
func bitShiftLeftUintInt(value, bits ref.Val) ref.Val {
v := value.(types.Uint)
bs := bits.(types.Int)
if bs < types.IntZero {
return types.NewErr("math.bitShiftLeft() negative offset: %d", bs)
}
return v << bs
}
func bitShiftRightIntInt(value, bits ref.Val) ref.Val {
v := value.(types.Int)
bs := bits.(types.Int)
if bs < types.IntZero {
return types.NewErr("math.bitShiftRight() negative offset: %d", bs)
}
return types.Int(types.Uint(v) >> bs)
}
func bitShiftRightUintInt(value, bits ref.Val) ref.Val {
v := value.(types.Uint)
bs := bits.(types.Int)
if bs < types.IntZero {
return types.NewErr("math.bitShiftRight() negative offset: %d", bs)
}
return v >> bs
}
func minPair(first, second ref.Val) ref.Val {
cmp, ok := first.(traits.Comparer)
if !ok {
return types.MaybeNoSuchOverloadErr(first)
}
out := cmp.Compare(second)
if types.IsUnknownOrError(out) {
return maybeSuffixError(out, "math.@min")
}
if out == types.IntOne {
return second
}
return first
}
func minList(numList ref.Val) ref.Val {
l := numList.(traits.Lister)
size := l.Size().(types.Int)
if size == types.IntZero {
return types.NewErr("math.@min(list) argument must not be empty")
}
min := l.Get(types.IntZero)
for i := types.IntOne; i < size; i++ {
min = minPair(min, l.Get(i))
}
switch min.Type() {
case types.IntType, types.DoubleType, types.UintType, types.UnknownType:
return min
default:
return types.NewErr("no such overload: math.@min")
}
}
func maxPair(first, second ref.Val) ref.Val {
cmp, ok := first.(traits.Comparer)
if !ok {
return types.MaybeNoSuchOverloadErr(first)
}
out := cmp.Compare(second)
if types.IsUnknownOrError(out) {
return maybeSuffixError(out, "math.@max")
}
if out == types.IntNegOne {
return second
}
return first
}
func maxList(numList ref.Val) ref.Val {
l := numList.(traits.Lister)
size := l.Size().(types.Int)
if size == types.IntZero {
return types.NewErr("math.@max(list) argument must not be empty")
}
max := l.Get(types.IntZero)
for i := types.IntOne; i < size; i++ {
max = maxPair(max, l.Get(i))
}
switch max.Type() {
case types.IntType, types.DoubleType, types.UintType, types.UnknownType:
return max
default:
return types.NewErr("no such overload: math.@max")
}
}
func checkInvalidArgs(meh cel.MacroExprFactory, funcName string, args []ast.Expr) *cel.Error {
for _, arg := range args {
err := checkInvalidArgLiteral(funcName, arg)
if err != nil {
return meh.NewError(arg.ID(), err.Error())
}
}
return nil
}
func checkInvalidArgLiteral(funcName string, arg ast.Expr) error {
if !isNumericArgType(arg) {
return fmt.Errorf("%s simple literal arguments must be numeric", funcName)
}
return nil
}
func isNumericArgType(arg ast.Expr) bool {
switch arg.Kind() {
case ast.LiteralKind:
c := ref.Val(arg.AsLiteral())
switch c.(type) {
case types.Double, types.Int, types.Uint:
return true
default:
return false
}
case ast.ListKind, ast.MapKind, ast.StructKind:
return false
default:
return true
}
}
func isListLiteralWithNumericArgs(arg ast.Expr) bool {
switch arg.Kind() {
case ast.ListKind:
list := arg.AsList()
if list.Size() == 0 {
return false
}
for _, e := range list.Elements() {
if !isNumericArgType(e) {
return false
}
}
return true
}
return false
}
func maybeSuffixError(val ref.Val, suffix string) ref.Val {
if types.IsError(val) {
msg := val.(*types.Err).String()
if !strings.Contains(msg, suffix) {
return types.NewErr("%s: %s", msg, suffix)
}
}
return val
}