ceph-csi/vendor/github.com/google/cel-go/parser/helper.go

475 lines
16 KiB
Go
Raw Normal View History

// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package parser
import (
"sync"
antlr "github.com/antlr4-go/antlr/v4"
"github.com/google/cel-go/common"
"github.com/google/cel-go/common/ast"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
)
type parserHelper struct {
exprFactory ast.ExprFactory
source common.Source
sourceInfo *ast.SourceInfo
nextID int64
}
func newParserHelper(source common.Source, fac ast.ExprFactory) *parserHelper {
return &parserHelper{
exprFactory: fac,
source: source,
sourceInfo: ast.NewSourceInfo(source),
nextID: 1,
}
}
func (p *parserHelper) getSourceInfo() *ast.SourceInfo {
return p.sourceInfo
}
func (p *parserHelper) newLiteral(ctx any, value ref.Val) ast.Expr {
return p.exprFactory.NewLiteral(p.newID(ctx), value)
}
func (p *parserHelper) newLiteralBool(ctx any, value bool) ast.Expr {
return p.newLiteral(ctx, types.Bool(value))
}
func (p *parserHelper) newLiteralString(ctx any, value string) ast.Expr {
return p.newLiteral(ctx, types.String(value))
}
func (p *parserHelper) newLiteralBytes(ctx any, value []byte) ast.Expr {
return p.newLiteral(ctx, types.Bytes(value))
}
func (p *parserHelper) newLiteralInt(ctx any, value int64) ast.Expr {
return p.newLiteral(ctx, types.Int(value))
}
func (p *parserHelper) newLiteralUint(ctx any, value uint64) ast.Expr {
return p.newLiteral(ctx, types.Uint(value))
}
func (p *parserHelper) newLiteralDouble(ctx any, value float64) ast.Expr {
return p.newLiteral(ctx, types.Double(value))
}
func (p *parserHelper) newIdent(ctx any, name string) ast.Expr {
return p.exprFactory.NewIdent(p.newID(ctx), name)
}
func (p *parserHelper) newSelect(ctx any, operand ast.Expr, field string) ast.Expr {
return p.exprFactory.NewSelect(p.newID(ctx), operand, field)
}
func (p *parserHelper) newPresenceTest(ctx any, operand ast.Expr, field string) ast.Expr {
return p.exprFactory.NewPresenceTest(p.newID(ctx), operand, field)
}
func (p *parserHelper) newGlobalCall(ctx any, function string, args ...ast.Expr) ast.Expr {
return p.exprFactory.NewCall(p.newID(ctx), function, args...)
}
func (p *parserHelper) newReceiverCall(ctx any, function string, target ast.Expr, args ...ast.Expr) ast.Expr {
return p.exprFactory.NewMemberCall(p.newID(ctx), function, target, args...)
}
func (p *parserHelper) newList(ctx any, elements []ast.Expr, optionals ...int32) ast.Expr {
return p.exprFactory.NewList(p.newID(ctx), elements, optionals)
}
func (p *parserHelper) newMap(ctx any, entries ...ast.EntryExpr) ast.Expr {
return p.exprFactory.NewMap(p.newID(ctx), entries)
}
func (p *parserHelper) newMapEntry(entryID int64, key ast.Expr, value ast.Expr, optional bool) ast.EntryExpr {
return p.exprFactory.NewMapEntry(entryID, key, value, optional)
}
func (p *parserHelper) newObject(ctx any, typeName string, fields ...ast.EntryExpr) ast.Expr {
return p.exprFactory.NewStruct(p.newID(ctx), typeName, fields)
}
func (p *parserHelper) newObjectField(fieldID int64, field string, value ast.Expr, optional bool) ast.EntryExpr {
return p.exprFactory.NewStructField(fieldID, field, value, optional)
}
func (p *parserHelper) newComprehension(ctx any,
iterRange ast.Expr,
iterVar string,
accuVar string,
accuInit ast.Expr,
condition ast.Expr,
step ast.Expr,
result ast.Expr) ast.Expr {
return p.exprFactory.NewComprehension(
p.newID(ctx), iterRange, iterVar, accuVar, accuInit, condition, step, result)
}
func (p *parserHelper) newID(ctx any) int64 {
if id, isID := ctx.(int64); isID {
return id
}
return p.id(ctx)
}
func (p *parserHelper) newExpr(ctx any) ast.Expr {
return p.exprFactory.NewUnspecifiedExpr(p.newID(ctx))
}
func (p *parserHelper) id(ctx any) int64 {
var offset ast.OffsetRange
switch c := ctx.(type) {
case antlr.ParserRuleContext:
start, stop := c.GetStart(), c.GetStop()
if stop == nil {
stop = start
}
offset.Start = p.sourceInfo.ComputeOffset(int32(start.GetLine()), int32(start.GetColumn()))
offset.Stop = p.sourceInfo.ComputeOffset(int32(stop.GetLine()), int32(stop.GetColumn()))
case antlr.Token:
offset.Start = p.sourceInfo.ComputeOffset(int32(c.GetLine()), int32(c.GetColumn()))
offset.Stop = offset.Start
case common.Location:
offset.Start = p.sourceInfo.ComputeOffset(int32(c.Line()), int32(c.Column()))
offset.Stop = offset.Start
case ast.OffsetRange:
offset = c
default:
// This should only happen if the ctx is nil
return -1
}
id := p.nextID
p.sourceInfo.SetOffsetRange(id, offset)
p.nextID++
return id
}
func (p *parserHelper) getLocation(id int64) common.Location {
return p.sourceInfo.GetStartLocation(id)
}
// buildMacroCallArg iterates the expression and returns a new expression
// where all macros have been replaced by their IDs in MacroCalls
func (p *parserHelper) buildMacroCallArg(expr ast.Expr) ast.Expr {
if _, found := p.sourceInfo.GetMacroCall(expr.ID()); found {
return p.exprFactory.NewUnspecifiedExpr(expr.ID())
}
switch expr.Kind() {
case ast.CallKind:
// Iterate the AST from `expr` recursively looking for macros. Because we are at most
// starting from the top level macro, this recursion is bounded by the size of the AST. This
// means that the depth check on the AST during parsing will catch recursion overflows
// before we get to here.
call := expr.AsCall()
macroArgs := make([]ast.Expr, len(call.Args()))
for index, arg := range call.Args() {
macroArgs[index] = p.buildMacroCallArg(arg)
}
if !call.IsMemberFunction() {
return p.exprFactory.NewCall(expr.ID(), call.FunctionName(), macroArgs...)
}
macroTarget := p.buildMacroCallArg(call.Target())
return p.exprFactory.NewMemberCall(expr.ID(), call.FunctionName(), macroTarget, macroArgs...)
case ast.ListKind:
list := expr.AsList()
macroListArgs := make([]ast.Expr, list.Size())
for i, elem := range list.Elements() {
macroListArgs[i] = p.buildMacroCallArg(elem)
}
return p.exprFactory.NewList(expr.ID(), macroListArgs, list.OptionalIndices())
}
return expr
}
// addMacroCall adds the macro the the MacroCalls map in source info. If a macro has args/subargs/target
// that are macros, their ID will be stored instead for later self-lookups.
func (p *parserHelper) addMacroCall(exprID int64, function string, target ast.Expr, args ...ast.Expr) {
macroArgs := make([]ast.Expr, len(args))
for index, arg := range args {
macroArgs[index] = p.buildMacroCallArg(arg)
}
if target == nil {
p.sourceInfo.SetMacroCall(exprID, p.exprFactory.NewCall(0, function, macroArgs...))
return
}
macroTarget := target
if _, found := p.sourceInfo.GetMacroCall(target.ID()); found {
macroTarget = p.exprFactory.NewUnspecifiedExpr(target.ID())
} else {
macroTarget = p.buildMacroCallArg(target)
}
p.sourceInfo.SetMacroCall(exprID, p.exprFactory.NewMemberCall(0, function, macroTarget, macroArgs...))
}
// logicManager compacts logical trees into a more efficient structure which is semantically
// equivalent with how the logic graph is constructed by the ANTLR parser.
//
// The purpose of the logicManager is to ensure a compact serialization format for the logical &&, ||
// operators which have a tendency to create long DAGs which are skewed in one direction. Since the
// operators are commutative re-ordering the terms *must not* affect the evaluation result.
//
// The logic manager will either render the terms to N-chained && / || operators as a single logical
// call with N-terms, or will rebalance the tree. Rebalancing the terms is a safe, if somewhat
// controversial choice as it alters the traditional order of execution assumptions present in most
// expressions.
type logicManager struct {
exprFactory ast.ExprFactory
function string
terms []ast.Expr
ops []int64
variadicASTs bool
}
// newVariadicLogicManager creates a logic manager instance bound to a specific function and its first term.
func newVariadicLogicManager(fac ast.ExprFactory, function string, term ast.Expr) *logicManager {
return &logicManager{
exprFactory: fac,
function: function,
terms: []ast.Expr{term},
ops: []int64{},
variadicASTs: true,
}
}
// newBalancingLogicManager creates a logic manager instance bound to a specific function and its first term.
func newBalancingLogicManager(fac ast.ExprFactory, function string, term ast.Expr) *logicManager {
return &logicManager{
exprFactory: fac,
function: function,
terms: []ast.Expr{term},
ops: []int64{},
variadicASTs: false,
}
}
// addTerm adds an operation identifier and term to the set of terms to be balanced.
func (l *logicManager) addTerm(op int64, term ast.Expr) {
l.terms = append(l.terms, term)
l.ops = append(l.ops, op)
}
// toExpr renders the logic graph into an Expr value, either balancing a tree of logical
// operations or creating a variadic representation of the logical operator.
func (l *logicManager) toExpr() ast.Expr {
if len(l.terms) == 1 {
return l.terms[0]
}
if l.variadicASTs {
return l.exprFactory.NewCall(l.ops[0], l.function, l.terms...)
}
return l.balancedTree(0, len(l.ops)-1)
}
// balancedTree recursively balances the terms provided to a commutative operator.
func (l *logicManager) balancedTree(lo, hi int) ast.Expr {
mid := (lo + hi + 1) / 2
var left ast.Expr
if mid == lo {
left = l.terms[mid]
} else {
left = l.balancedTree(lo, mid-1)
}
var right ast.Expr
if mid == hi {
right = l.terms[mid+1]
} else {
right = l.balancedTree(mid+1, hi)
}
return l.exprFactory.NewCall(l.ops[mid], l.function, left, right)
}
type exprHelper struct {
*parserHelper
id int64
}
func (e *exprHelper) nextMacroID() int64 {
return e.parserHelper.id(e.parserHelper.getLocation(e.id))
}
// Copy implements the ExprHelper interface method by producing a copy of the input Expr value
// with a fresh set of numeric identifiers the Expr and all its descendants.
func (e *exprHelper) Copy(expr ast.Expr) ast.Expr {
offsetRange, _ := e.parserHelper.sourceInfo.GetOffsetRange(expr.ID())
copyID := e.parserHelper.newID(offsetRange)
switch expr.Kind() {
case ast.LiteralKind:
return e.exprFactory.NewLiteral(copyID, expr.AsLiteral())
case ast.IdentKind:
return e.exprFactory.NewIdent(copyID, expr.AsIdent())
case ast.SelectKind:
sel := expr.AsSelect()
op := e.Copy(sel.Operand())
if sel.IsTestOnly() {
return e.exprFactory.NewPresenceTest(copyID, op, sel.FieldName())
}
return e.exprFactory.NewSelect(copyID, op, sel.FieldName())
case ast.CallKind:
call := expr.AsCall()
args := call.Args()
argsCopy := make([]ast.Expr, len(args))
for i, arg := range args {
argsCopy[i] = e.Copy(arg)
}
if !call.IsMemberFunction() {
return e.exprFactory.NewCall(copyID, call.FunctionName(), argsCopy...)
}
return e.exprFactory.NewMemberCall(copyID, call.FunctionName(), e.Copy(call.Target()), argsCopy...)
case ast.ListKind:
list := expr.AsList()
elems := list.Elements()
elemsCopy := make([]ast.Expr, len(elems))
for i, elem := range elems {
elemsCopy[i] = e.Copy(elem)
}
return e.exprFactory.NewList(copyID, elemsCopy, list.OptionalIndices())
case ast.MapKind:
m := expr.AsMap()
entries := m.Entries()
entriesCopy := make([]ast.EntryExpr, len(entries))
for i, en := range entries {
entry := en.AsMapEntry()
entryID := e.nextMacroID()
entriesCopy[i] = e.exprFactory.NewMapEntry(entryID,
e.Copy(entry.Key()), e.Copy(entry.Value()), entry.IsOptional())
}
return e.exprFactory.NewMap(copyID, entriesCopy)
case ast.StructKind:
s := expr.AsStruct()
fields := s.Fields()
fieldsCopy := make([]ast.EntryExpr, len(fields))
for i, f := range fields {
field := f.AsStructField()
fieldID := e.nextMacroID()
fieldsCopy[i] = e.exprFactory.NewStructField(fieldID,
field.Name(), e.Copy(field.Value()), field.IsOptional())
}
return e.exprFactory.NewStruct(copyID, s.TypeName(), fieldsCopy)
case ast.ComprehensionKind:
compre := expr.AsComprehension()
iterRange := e.Copy(compre.IterRange())
accuInit := e.Copy(compre.AccuInit())
cond := e.Copy(compre.LoopCondition())
step := e.Copy(compre.LoopStep())
result := e.Copy(compre.Result())
return e.exprFactory.NewComprehension(copyID,
iterRange, compre.IterVar(), compre.AccuVar(), accuInit, cond, step, result)
}
return e.exprFactory.NewUnspecifiedExpr(copyID)
}
// NewLiteral implements the ExprHelper interface method.
func (e *exprHelper) NewLiteral(value ref.Val) ast.Expr {
return e.exprFactory.NewLiteral(e.nextMacroID(), value)
}
// NewList implements the ExprHelper interface method.
func (e *exprHelper) NewList(elems ...ast.Expr) ast.Expr {
return e.exprFactory.NewList(e.nextMacroID(), elems, []int32{})
}
// NewMap implements the ExprHelper interface method.
func (e *exprHelper) NewMap(entries ...ast.EntryExpr) ast.Expr {
return e.exprFactory.NewMap(e.nextMacroID(), entries)
}
// NewMapEntry implements the ExprHelper interface method.
func (e *exprHelper) NewMapEntry(key ast.Expr, val ast.Expr, optional bool) ast.EntryExpr {
return e.exprFactory.NewMapEntry(e.nextMacroID(), key, val, optional)
}
// NewStruct implements the ExprHelper interface method.
func (e *exprHelper) NewStruct(typeName string, fieldInits ...ast.EntryExpr) ast.Expr {
return e.exprFactory.NewStruct(e.nextMacroID(), typeName, fieldInits)
}
// NewStructField implements the ExprHelper interface method.
func (e *exprHelper) NewStructField(field string, init ast.Expr, optional bool) ast.EntryExpr {
return e.exprFactory.NewStructField(e.nextMacroID(), field, init, optional)
}
// NewComprehension implements the ExprHelper interface method.
func (e *exprHelper) NewComprehension(
iterRange ast.Expr,
iterVar string,
accuVar string,
accuInit ast.Expr,
condition ast.Expr,
step ast.Expr,
result ast.Expr) ast.Expr {
return e.exprFactory.NewComprehension(
e.nextMacroID(), iterRange, iterVar, accuVar, accuInit, condition, step, result)
}
// NewIdent implements the ExprHelper interface method.
func (e *exprHelper) NewIdent(name string) ast.Expr {
return e.exprFactory.NewIdent(e.nextMacroID(), name)
}
// NewAccuIdent implements the ExprHelper interface method.
func (e *exprHelper) NewAccuIdent() ast.Expr {
return e.exprFactory.NewAccuIdent(e.nextMacroID())
}
// NewGlobalCall implements the ExprHelper interface method.
func (e *exprHelper) NewCall(function string, args ...ast.Expr) ast.Expr {
return e.exprFactory.NewCall(e.nextMacroID(), function, args...)
}
// NewMemberCall implements the ExprHelper interface method.
func (e *exprHelper) NewMemberCall(function string, target ast.Expr, args ...ast.Expr) ast.Expr {
return e.exprFactory.NewMemberCall(e.nextMacroID(), function, target, args...)
}
// NewPresenceTest implements the ExprHelper interface method.
func (e *exprHelper) NewPresenceTest(operand ast.Expr, field string) ast.Expr {
return e.exprFactory.NewPresenceTest(e.nextMacroID(), operand, field)
}
// NewSelect implements the ExprHelper interface method.
func (e *exprHelper) NewSelect(operand ast.Expr, field string) ast.Expr {
return e.exprFactory.NewSelect(e.nextMacroID(), operand, field)
}
// OffsetLocation implements the ExprHelper interface method.
func (e *exprHelper) OffsetLocation(exprID int64) common.Location {
return e.parserHelper.sourceInfo.GetStartLocation(exprID)
}
// NewError associates an error message with a given expression id, populating the source offset location of the error if possible.
func (e *exprHelper) NewError(exprID int64, message string) *common.Error {
return common.NewError(exprID, message, e.OffsetLocation(exprID))
}
var (
// Thread-safe pool of ExprHelper values to minimize alloc overhead of ExprHelper creations.
exprHelperPool = &sync.Pool{
New: func() any {
return &exprHelper{}
},
}
)