ceph-csi/vendor/github.com/google/cel-go/common/ast/navigable.go

653 lines
16 KiB
Go
Raw Normal View History

// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ast
import (
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
)
// NavigableExpr represents the base navigable expression value with methods to inspect the
// parent and child expressions.
type NavigableExpr interface {
Expr
// Type of the expression.
//
// If the expression is type-checked, the type check metadata is returned. If the expression
// has not been type-checked, the types.DynType value is returned.
Type() *types.Type
// Parent returns the parent expression node, if one exists.
Parent() (NavigableExpr, bool)
// Children returns a list of child expression nodes.
Children() []NavigableExpr
// Depth indicates the depth in the expression tree.
//
// The root expression has depth 0.
Depth() int
}
// NavigateAST converts an AST to a NavigableExpr
func NavigateAST(ast *AST) NavigableExpr {
return NavigateExpr(ast, ast.Expr())
}
// NavigateExpr creates a NavigableExpr whose type information is backed by the input AST.
//
// If the expression is already a NavigableExpr, the parent and depth information will be
// propagated on the new NavigableExpr value; otherwise, the expr value will be treated
// as though it is the root of the expression graph with a depth of 0.
func NavigateExpr(ast *AST, expr Expr) NavigableExpr {
depth := 0
var parent NavigableExpr = nil
if nav, ok := expr.(NavigableExpr); ok {
depth = nav.Depth()
parent, _ = nav.Parent()
}
return newNavigableExpr(ast, parent, expr, depth)
}
// ExprMatcher takes a NavigableExpr in and indicates whether the value is a match.
//
// This function type should be use with the `Match` and `MatchList` calls.
type ExprMatcher func(NavigableExpr) bool
// ConstantValueMatcher returns an ExprMatcher which will return true if the input NavigableExpr
// is comprised of all constant values, such as a simple literal or even list and map literal.
func ConstantValueMatcher() ExprMatcher {
return matchIsConstantValue
}
// KindMatcher returns an ExprMatcher which will return true if the input NavigableExpr.Kind() matches
// the specified `kind`.
func KindMatcher(kind ExprKind) ExprMatcher {
return func(e NavigableExpr) bool {
return e.Kind() == kind
}
}
// FunctionMatcher returns an ExprMatcher which will match NavigableExpr nodes of CallKind type whose
// function name is equal to `funcName`.
func FunctionMatcher(funcName string) ExprMatcher {
return func(e NavigableExpr) bool {
if e.Kind() != CallKind {
return false
}
return e.AsCall().FunctionName() == funcName
}
}
// AllMatcher returns true for all descendants of a NavigableExpr, effectively flattening them into a list.
//
// Such a result would work well with subsequent MatchList calls.
func AllMatcher() ExprMatcher {
return func(NavigableExpr) bool {
return true
}
}
// MatchDescendants takes a NavigableExpr and ExprMatcher and produces a list of NavigableExpr values
// matching the input criteria in post-order (bottom up).
func MatchDescendants(expr NavigableExpr, matcher ExprMatcher) []NavigableExpr {
matches := []NavigableExpr{}
navVisitor := &baseVisitor{
visitExpr: func(e Expr) {
nav := e.(NavigableExpr)
if matcher(nav) {
matches = append(matches, nav)
}
},
}
visit(expr, navVisitor, postOrder, 0, 0)
return matches
}
// MatchSubset applies an ExprMatcher to a list of NavigableExpr values and their descendants, producing a
// subset of NavigableExpr values which match.
func MatchSubset(exprs []NavigableExpr, matcher ExprMatcher) []NavigableExpr {
matches := []NavigableExpr{}
navVisitor := &baseVisitor{
visitExpr: func(e Expr) {
nav := e.(NavigableExpr)
if matcher(nav) {
matches = append(matches, nav)
}
},
}
for _, expr := range exprs {
visit(expr, navVisitor, postOrder, 0, 1)
}
return matches
}
// Visitor defines an object for visiting Expr and EntryExpr nodes within an expression graph.
type Visitor interface {
// VisitExpr visits the input expression.
VisitExpr(Expr)
// VisitEntryExpr visits the input entry expression, i.e. a struct field or map entry.
VisitEntryExpr(EntryExpr)
}
type baseVisitor struct {
visitExpr func(Expr)
visitEntryExpr func(EntryExpr)
}
// VisitExpr visits the Expr if the internal expr visitor has been configured.
func (v *baseVisitor) VisitExpr(e Expr) {
if v.visitExpr != nil {
v.visitExpr(e)
}
}
// VisitEntryExpr visits the entry if the internal expr entry visitor has been configured.
func (v *baseVisitor) VisitEntryExpr(e EntryExpr) {
if v.visitEntryExpr != nil {
v.visitEntryExpr(e)
}
}
// NewExprVisitor creates a visitor which only visits expression nodes.
func NewExprVisitor(v func(Expr)) Visitor {
return &baseVisitor{
visitExpr: v,
visitEntryExpr: nil,
}
}
// PostOrderVisit walks the expression graph and calls the visitor in post-order (bottom-up).
func PostOrderVisit(expr Expr, visitor Visitor) {
visit(expr, visitor, postOrder, 0, 0)
}
// PreOrderVisit walks the expression graph and calls the visitor in pre-order (top-down).
func PreOrderVisit(expr Expr, visitor Visitor) {
visit(expr, visitor, preOrder, 0, 0)
}
type visitOrder int
const (
preOrder = iota + 1
postOrder
)
// TODO: consider exposing a way to configure a limit for the max visit depth.
// It's possible that we could want to configure this on the NewExprVisitor()
// and through MatchDescendents() / MaxID().
func visit(expr Expr, visitor Visitor, order visitOrder, depth, maxDepth int) {
if maxDepth > 0 && depth == maxDepth {
return
}
if order == preOrder {
visitor.VisitExpr(expr)
}
switch expr.Kind() {
case CallKind:
c := expr.AsCall()
if c.IsMemberFunction() {
visit(c.Target(), visitor, order, depth+1, maxDepth)
}
for _, arg := range c.Args() {
visit(arg, visitor, order, depth+1, maxDepth)
}
case ComprehensionKind:
c := expr.AsComprehension()
visit(c.IterRange(), visitor, order, depth+1, maxDepth)
visit(c.AccuInit(), visitor, order, depth+1, maxDepth)
visit(c.LoopCondition(), visitor, order, depth+1, maxDepth)
visit(c.LoopStep(), visitor, order, depth+1, maxDepth)
visit(c.Result(), visitor, order, depth+1, maxDepth)
case ListKind:
l := expr.AsList()
for _, elem := range l.Elements() {
visit(elem, visitor, order, depth+1, maxDepth)
}
case MapKind:
m := expr.AsMap()
for _, e := range m.Entries() {
if order == preOrder {
visitor.VisitEntryExpr(e)
}
entry := e.AsMapEntry()
visit(entry.Key(), visitor, order, depth+1, maxDepth)
visit(entry.Value(), visitor, order, depth+1, maxDepth)
if order == postOrder {
visitor.VisitEntryExpr(e)
}
}
case SelectKind:
visit(expr.AsSelect().Operand(), visitor, order, depth+1, maxDepth)
case StructKind:
s := expr.AsStruct()
for _, f := range s.Fields() {
visitor.VisitEntryExpr(f)
visit(f.AsStructField().Value(), visitor, order, depth+1, maxDepth)
}
}
if order == postOrder {
visitor.VisitExpr(expr)
}
}
func matchIsConstantValue(e NavigableExpr) bool {
if e.Kind() == LiteralKind {
return true
}
if e.Kind() == StructKind || e.Kind() == MapKind || e.Kind() == ListKind {
for _, child := range e.Children() {
if !matchIsConstantValue(child) {
return false
}
}
return true
}
return false
}
func newNavigableExpr(ast *AST, parent NavigableExpr, expr Expr, depth int) NavigableExpr {
// Reduce navigable expression nesting by unwrapping the embedded Expr value.
if nav, ok := expr.(*navigableExprImpl); ok {
expr = nav.Expr
}
nav := &navigableExprImpl{
Expr: expr,
depth: depth,
ast: ast,
parent: parent,
createChildren: getChildFactory(expr),
}
return nav
}
type navigableExprImpl struct {
Expr
depth int
ast *AST
parent NavigableExpr
createChildren childFactory
}
func (nav *navigableExprImpl) Parent() (NavigableExpr, bool) {
if nav.parent != nil {
return nav.parent, true
}
return nil, false
}
func (nav *navigableExprImpl) ID() int64 {
return nav.Expr.ID()
}
func (nav *navigableExprImpl) Kind() ExprKind {
return nav.Expr.Kind()
}
func (nav *navigableExprImpl) Type() *types.Type {
return nav.ast.GetType(nav.ID())
}
func (nav *navigableExprImpl) Children() []NavigableExpr {
return nav.createChildren(nav)
}
func (nav *navigableExprImpl) Depth() int {
return nav.depth
}
func (nav *navigableExprImpl) AsCall() CallExpr {
return navigableCallImpl{navigableExprImpl: nav}
}
func (nav *navigableExprImpl) AsComprehension() ComprehensionExpr {
return navigableComprehensionImpl{navigableExprImpl: nav}
}
func (nav *navigableExprImpl) AsIdent() string {
return nav.Expr.AsIdent()
}
func (nav *navigableExprImpl) AsList() ListExpr {
return navigableListImpl{navigableExprImpl: nav}
}
func (nav *navigableExprImpl) AsLiteral() ref.Val {
return nav.Expr.AsLiteral()
}
func (nav *navigableExprImpl) AsMap() MapExpr {
return navigableMapImpl{navigableExprImpl: nav}
}
func (nav *navigableExprImpl) AsSelect() SelectExpr {
return navigableSelectImpl{navigableExprImpl: nav}
}
func (nav *navigableExprImpl) AsStruct() StructExpr {
return navigableStructImpl{navigableExprImpl: nav}
}
func (nav *navigableExprImpl) createChild(e Expr) NavigableExpr {
return newNavigableExpr(nav.ast, nav, e, nav.depth+1)
}
func (nav *navigableExprImpl) isExpr() {}
type navigableCallImpl struct {
*navigableExprImpl
}
func (call navigableCallImpl) FunctionName() string {
return call.Expr.AsCall().FunctionName()
}
func (call navigableCallImpl) IsMemberFunction() bool {
return call.Expr.AsCall().IsMemberFunction()
}
func (call navigableCallImpl) Target() Expr {
t := call.Expr.AsCall().Target()
if t != nil {
return call.createChild(t)
}
return nil
}
func (call navigableCallImpl) Args() []Expr {
args := call.Expr.AsCall().Args()
navArgs := make([]Expr, len(args))
for i, a := range args {
navArgs[i] = call.createChild(a)
}
return navArgs
}
type navigableComprehensionImpl struct {
*navigableExprImpl
}
func (comp navigableComprehensionImpl) IterRange() Expr {
return comp.createChild(comp.Expr.AsComprehension().IterRange())
}
func (comp navigableComprehensionImpl) IterVar() string {
return comp.Expr.AsComprehension().IterVar()
}
func (comp navigableComprehensionImpl) AccuVar() string {
return comp.Expr.AsComprehension().AccuVar()
}
func (comp navigableComprehensionImpl) AccuInit() Expr {
return comp.createChild(comp.Expr.AsComprehension().AccuInit())
}
func (comp navigableComprehensionImpl) LoopCondition() Expr {
return comp.createChild(comp.Expr.AsComprehension().LoopCondition())
}
func (comp navigableComprehensionImpl) LoopStep() Expr {
return comp.createChild(comp.Expr.AsComprehension().LoopStep())
}
func (comp navigableComprehensionImpl) Result() Expr {
return comp.createChild(comp.Expr.AsComprehension().Result())
}
type navigableListImpl struct {
*navigableExprImpl
}
func (l navigableListImpl) Elements() []Expr {
pbElems := l.Expr.AsList().Elements()
elems := make([]Expr, len(pbElems))
for i := 0; i < len(pbElems); i++ {
elems[i] = l.createChild(pbElems[i])
}
return elems
}
func (l navigableListImpl) IsOptional(index int32) bool {
return l.Expr.AsList().IsOptional(index)
}
func (l navigableListImpl) OptionalIndices() []int32 {
return l.Expr.AsList().OptionalIndices()
}
func (l navigableListImpl) Size() int {
return l.Expr.AsList().Size()
}
type navigableMapImpl struct {
*navigableExprImpl
}
func (m navigableMapImpl) Entries() []EntryExpr {
mapExpr := m.Expr.AsMap()
entries := make([]EntryExpr, len(mapExpr.Entries()))
for i, e := range mapExpr.Entries() {
entry := e.AsMapEntry()
entries[i] = &entryExpr{
id: e.ID(),
entryExprKindCase: navigableEntryImpl{
key: m.createChild(entry.Key()),
val: m.createChild(entry.Value()),
isOpt: entry.IsOptional(),
},
}
}
return entries
}
func (m navigableMapImpl) Size() int {
return m.Expr.AsMap().Size()
}
type navigableEntryImpl struct {
key NavigableExpr
val NavigableExpr
isOpt bool
}
func (e navigableEntryImpl) Kind() EntryExprKind {
return MapEntryKind
}
func (e navigableEntryImpl) Key() Expr {
return e.key
}
func (e navigableEntryImpl) Value() Expr {
return e.val
}
func (e navigableEntryImpl) IsOptional() bool {
return e.isOpt
}
func (e navigableEntryImpl) renumberIDs(IDGenerator) {}
func (e navigableEntryImpl) isEntryExpr() {}
type navigableSelectImpl struct {
*navigableExprImpl
}
func (sel navigableSelectImpl) FieldName() string {
return sel.Expr.AsSelect().FieldName()
}
func (sel navigableSelectImpl) IsTestOnly() bool {
return sel.Expr.AsSelect().IsTestOnly()
}
func (sel navigableSelectImpl) Operand() Expr {
return sel.createChild(sel.Expr.AsSelect().Operand())
}
type navigableStructImpl struct {
*navigableExprImpl
}
func (s navigableStructImpl) TypeName() string {
return s.Expr.AsStruct().TypeName()
}
func (s navigableStructImpl) Fields() []EntryExpr {
fieldInits := s.Expr.AsStruct().Fields()
fields := make([]EntryExpr, len(fieldInits))
for i, f := range fieldInits {
field := f.AsStructField()
fields[i] = &entryExpr{
id: f.ID(),
entryExprKindCase: navigableFieldImpl{
name: field.Name(),
val: s.createChild(field.Value()),
isOpt: field.IsOptional(),
},
}
}
return fields
}
type navigableFieldImpl struct {
name string
val NavigableExpr
isOpt bool
}
func (f navigableFieldImpl) Kind() EntryExprKind {
return StructFieldKind
}
func (f navigableFieldImpl) Name() string {
return f.name
}
func (f navigableFieldImpl) Value() Expr {
return f.val
}
func (f navigableFieldImpl) IsOptional() bool {
return f.isOpt
}
func (f navigableFieldImpl) renumberIDs(IDGenerator) {}
func (f navigableFieldImpl) isEntryExpr() {}
func getChildFactory(expr Expr) childFactory {
if expr == nil {
return noopFactory
}
switch expr.Kind() {
case LiteralKind:
return noopFactory
case IdentKind:
return noopFactory
case SelectKind:
return selectFactory
case CallKind:
return callArgFactory
case ListKind:
return listElemFactory
case MapKind:
return mapEntryFactory
case StructKind:
return structEntryFactory
case ComprehensionKind:
return comprehensionFactory
default:
return noopFactory
}
}
type childFactory func(*navigableExprImpl) []NavigableExpr
func noopFactory(*navigableExprImpl) []NavigableExpr {
return nil
}
func selectFactory(nav *navigableExprImpl) []NavigableExpr {
return []NavigableExpr{nav.createChild(nav.AsSelect().Operand())}
}
func callArgFactory(nav *navigableExprImpl) []NavigableExpr {
call := nav.Expr.AsCall()
argCount := len(call.Args())
if call.IsMemberFunction() {
argCount++
}
navExprs := make([]NavigableExpr, argCount)
i := 0
if call.IsMemberFunction() {
navExprs[i] = nav.createChild(call.Target())
i++
}
for _, arg := range call.Args() {
navExprs[i] = nav.createChild(arg)
i++
}
return navExprs
}
func listElemFactory(nav *navigableExprImpl) []NavigableExpr {
l := nav.Expr.AsList()
navExprs := make([]NavigableExpr, len(l.Elements()))
for i, e := range l.Elements() {
navExprs[i] = nav.createChild(e)
}
return navExprs
}
func structEntryFactory(nav *navigableExprImpl) []NavigableExpr {
s := nav.Expr.AsStruct()
entries := make([]NavigableExpr, len(s.Fields()))
for i, e := range s.Fields() {
f := e.AsStructField()
entries[i] = nav.createChild(f.Value())
}
return entries
}
func mapEntryFactory(nav *navigableExprImpl) []NavigableExpr {
m := nav.Expr.AsMap()
entries := make([]NavigableExpr, len(m.Entries())*2)
j := 0
for _, e := range m.Entries() {
mapEntry := e.AsMapEntry()
entries[j] = nav.createChild(mapEntry.Key())
entries[j+1] = nav.createChild(mapEntry.Value())
j += 2
}
return entries
}
func comprehensionFactory(nav *navigableExprImpl) []NavigableExpr {
compre := nav.Expr.AsComprehension()
return []NavigableExpr{
nav.createChild(compre.IterRange()),
nav.createChild(compre.AccuInit()),
nav.createChild(compre.LoopCondition()),
nav.createChild(compre.LoopStep()),
nav.createChild(compre.Result()),
}
}