vendor files

This commit is contained in:
Serguei Bezverkhi
2018-01-09 13:57:14 -05:00
parent 558bc6c02a
commit 7b24313bd6
16547 changed files with 4527373 additions and 0 deletions

View File

@ -0,0 +1,80 @@
# Compression
The preferred method for configuring message compression on both clients and
servers is to use
[`encoding.RegisterCompressor`](https://godoc.org/google.golang.org/grpc/encoding#RegisterCompressor)
to register an implementation of a compression algorithm. See
`grpc/encoding/gzip/gzip.go` for an example of how to implement one.
Once a compressor has been registered on the client-side, RPCs may be sent using
it via the
[`UseCompressor`](https://godoc.org/google.golang.org/grpc#UseCompressor)
`CallOption`. Remember that `CallOption`s may be turned into defaults for all
calls from a `ClientConn` by using the
[`WithDefaultCallOptions`](https://godoc.org/google.golang.org/grpc#WithDefaultCallOptions)
`DialOption`. If `UseCompressor` is used and the corresponding compressor has
not been installed, an `Internal` error will be returned to the application
before the RPC is sent.
Server-side, registered compressors will be used automatically to decode request
messages and encode the responses. Servers currently always respond using the
same compression method specified by the client. If the corresponding
compressor has not been registered, an `Unimplemented` status will be returned
to the client.
## Deprecated API
There is a deprecated API for setting compression as well. It is not
recommended for use. However, if you were previously using it, the following
section may be helpful in understanding how it works in combination with the new
API.
### Client-Side
There are two legacy functions and one new function to configure compression:
```go
func WithCompressor(grpc.Compressor) DialOption {}
func WithDecompressor(grpc.Decompressor) DialOption {}
func UseCompressor(name) CallOption {}
```
For outgoing requests, the following rules are applied in order:
1. If `UseCompressor` is used, messages will be compressed using the compressor
named.
* If the compressor named is not registered, an Internal error is returned
back to the client before sending the RPC.
* If UseCompressor("identity"), no compressor will be used, but "identity"
will be sent in the header to the server.
1. If `WithCompressor` is used, messages will be compressed using that
compressor implementation.
1. Otherwise, outbound messages will be uncompressed.
For incoming responses, the following rules are applied in order:
1. If `WithDecompressor` is used and it matches the message's encoding, it will
be used.
1. If a registered compressor matches the response's encoding, it will be used.
1. Otherwise, the stream will be closed and an `Unimplemented` status error will
be returned to the application.
### Server-Side
There are two legacy functions to configure compression:
```go
func RPCCompressor(grpc.Compressor) ServerOption {}
func RPCDecompressor(grpc.Decompressor) ServerOption {}
```
For incoming requests, the following rules are applied in order:
1. If `RPCDecompressor` is used and that decompressor matches the request's
encoding: it will be used.
1. If a registered compressor matches the request's encoding, it will be used.
1. Otherwise, an `Unimplemented` status will be returned to the client.
For outgoing responses, the following rules are applied in order:
1. If `RPCCompressor` is used, that compressor will be used to compress all
response messages.
1. If compression was used for the incoming request and a registered compressor
supports it, that same compression method will be used for the outgoing
response.
1. Otherwise, no compression will be used for the outgoing response.

View File

@ -0,0 +1,182 @@
# Mocking Service for gRPC
[Example code unary RPC](https://github.com/grpc/grpc-go/tree/master/examples/helloworld/mock_helloworld)
[Example code streaming RPC](https://github.com/grpc/grpc-go/tree/master/examples/route_guide/mock_routeguide)
## Why?
To test client-side logic without the overhead of connecting to a real server. Mocking enables users to write light-weight unit tests to check functionalities on client-side without invoking RPC calls to a server.
## Idea: Mock the client stub that connects to the server.
We use Gomock to mock the client interface (in the generated code) and programmatically set its methods to expect and return pre-determined values. This enables users to write tests around the client logic and use this mocked stub while making RPC calls.
## How to use Gomock?
Documentation on Gomock can be found [here](https://github.com/golang/mock).
A quick reading of the documentation should enable users to follow the code below.
Consider a gRPC service based on following proto file:
```proto
//helloworld.proto
package helloworld;
message HelloRequest {
string name = 1;
}
message HelloReply {
string name = 1;
}
service Greeter {
rpc SayHello (HelloRequest) returns (HelloReply) {}
}
```
The generated file helloworld.pb.go will have a client interface for each service defined in the proto file. This interface will have methods corresponding to each rpc inside that service.
```Go
type GreeterClient interface {
SayHello(ctx context.Context, in *HelloRequest, opts ...grpc.CallOption) (*HelloReply, error)
}
```
The generated code also contains a struct that implements this interface.
```Go
type greeterClient struct {
cc *grpc.ClientConn
}
func (c *greeterClient) SayHello(ctx context.Context, in *HelloRequest, opts ...grpc.CallOption) (*HelloReply, error){
// ...
// gRPC specific code here
// ...
}
```
Along with this the generated code has a method to create an instance of this struct.
```Go
func NewGreeterClient(cc *grpc.ClientConn) GreeterClient
```
The user code uses this function to create an instance of the struct greeterClient which then can be used to make rpc calls to the server.
We will mock this interface GreeterClient and use an instance of that mock to make rpc calls. These calls instead of going to server will return pre-determined values.
To create a mock well use [mockgen](https://github.com/golang/mock#running-mockgen).
From the directory ``` examples/helloworld/ ``` run ``` mockgen google.golang.org/grpc/examples/helloworld/helloworld GreeterClient > mock_helloworld/hw_mock.go ```
Notice that in the above command we specify GreeterClient as the interface to be mocked.
The user test code can import the package generated by mockgen along with library package gomock to write unit tests around client-side logic.
```Go
import "github.com/golang/mock/gomock"
import hwmock "google.golang.org/grpc/examples/helloworld/mock_helloworld"
```
An instance of the mocked interface can be created as:
```Go
mockGreeterClient := hwmock.NewMockGreeterClient(ctrl)
```
This mocked object can be programmed to expect calls to its methods and return pre-determined values. For instance, we can program mockGreeterClient to expect a call to its method SayHello and return a HelloReply with message “Mocked RPC”.
```Go
mockGreeterClient.EXPECT().SayHello(
gomock.Any(), // expect any value for first parameter
gomock.Any(), // expect any value for second parameter
).Return(&helloworld.HelloReply{Message: “Mocked RPC”}, nil)
```
gomock.Any() indicates that the parameter can have any value or type. We can indicate specific values for built-in types with gomock.Eq().
However, if the test code needs to specify the parameter to have a proto message type, we can replace gomock.Any() with an instance of a struct that implements gomock.Matcher interface.
```Go
type rpcMsg struct {
msg proto.Message
}
func (r *rpcMsg) Matches(msg interface{}) bool {
m, ok := msg.(proto.Message)
if !ok {
return false
}
return proto.Equal(m, r.msg)
}
func (r *rpcMsg) String() string {
return fmt.Sprintf("is %s", r.msg)
}
...
req := &helloworld.HelloRequest{Name: "unit_test"}
mockGreeterClient.EXPECT().SayHello(
gomock.Any(),
&rpcMsg{msg: req},
).Return(&helloworld.HelloReply{Message: "Mocked Interface"}, nil)
```
## Mock streaming RPCs:
For our example we consider the case of bi-directional streaming RPCs. Concretely, we'll write a test for RouteChat function from the route guide example to demonstrate how to write mocks for streams.
RouteChat is a bi-directional streaming RPC, which means calling RouteChat returns a stream that can __Send__ and __Recv__ messages to and from the server, respectively. We'll start by creating a mock of this stream interface returned by RouteChat and then we'll mock the client interface and set expectation on the method RouteChat to return our mocked stream.
### Generating mocking code:
Like before we'll use [mockgen](https://github.com/golang/mock#running-mockgen). From the `examples/route_guide` directory run: `mockgen google.golang.org/grpc/examples/route_guide/routeguide RouteGuideClient,RouteGuide_RouteChatClient > mock_route_guide/rg_mock.go`
Notice that we are mocking both client(`RouteGuideClient`) and stream(`RouteGuide_RouteChatClient`) interfaces here.
This will create a file `rg_mock.go` under directory `mock_route_guide`. This file contins all the mocking code we need to write our test.
In our test code, like before, we import the this mocking code along with the generated code
```go
import (
rgmock "google.golang.org/grpc/examples/route_guide/mock_routeguide"
rgpb "google.golang.org/grpc/examples/route_guide/routeguide"
)
```
Now conside a test that takes the RouteGuide client object as a parameter, makes a RouteChat rpc call and sends a message on the resulting stream. Furthermore, this test expects to see the same message to be received on the stream.
```go
var msg = ...
// Creates a RouteChat call and sends msg on it.
// Checks if the received message was equal to msg.
func testRouteChat(client rgb.RouteChatClient) error{
...
}
```
We can inject our mock in here by simply passing it as an argument to the method.
Creating mock for stream interface:
```go
stream := rgmock.NewMockRouteGuide_RouteChatClient(ctrl)
}
```
Setting Expectations:
```go
stream.EXPECT().Send(gomock.Any()).Return(nil)
stream.EXPECT().Recv().Return(msg, nil)
```
Creating mock for client interface:
```go
rgclient := rgmock.NewMockRouteGuideClient(ctrl)
```
Setting Expectations:
```go
rgclient.EXPECT().RouteChat(gomock.Any()).Return(stream, nil)
```

View File

@ -0,0 +1,41 @@
# Authentication
As outlined in the [gRPC authentication guide](https://grpc.io/docs/guides/auth.html) there are a number of different mechanisms for asserting identity between an client and server. We'll present some code-samples here demonstrating how to provide TLS support encryption and identity assertions as well as passing OAuth2 tokens to services that support it.
# Enabling TLS on a gRPC client
```Go
conn, err := grpc.Dial(serverAddr, grpc.WithTransportCredentials(credentials.NewClientTLSFromCert(nil, "")))
```
# Enabling TLS on a gRPC server
```Go
creds, err := credentials.NewServerTLSFromFile(certFile, keyFile)
if err != nil {
log.Fatalf("Failed to generate credentials %v", err)
}
lis, err := net.Listen("tcp", ":0")
server := grpc.NewServer(grpc.Creds(creds))
...
server.Serve(lis)
```
# Authenticating with Google
## Google Compute Engine (GCE)
```Go
conn, err := grpc.Dial(serverAddr, grpc.WithTransportCredentials(credentials.NewClientTLSFromCert(nil, "")), grpc.WithPerRPCCredentials(oauth.NewComputeEngine()))
```
## JWT
```Go
jwtCreds, err := oauth.NewServiceAccountFromFile(*serviceAccountKeyFile, *oauthScope)
if err != nil {
log.Fatalf("Failed to create JWT credentials: %v", err)
}
conn, err := grpc.Dial(serverAddr, grpc.WithTransportCredentials(credentials.NewClientTLSFromCert(nil, "")), grpc.WithPerRPCCredentials(jwtCreds))
```

View File

@ -0,0 +1,204 @@
# Metadata
gRPC supports sending metadata between client and server.
This doc shows how to send and receive metadata in gRPC-go.
## Background
Four kinds of service method:
- [Unary RPC](https://grpc.io/docs/guides/concepts.html#unary-rpc)
- [Server streaming RPC](https://grpc.io/docs/guides/concepts.html#server-streaming-rpc)
- [Client streaming RPC](https://grpc.io/docs/guides/concepts.html#client-streaming-rpc)
- [Bidirectional streaming RPC](https://grpc.io/docs/guides/concepts.html#bidirectional-streaming-rpc)
And concept of [metadata](https://grpc.io/docs/guides/concepts.html#metadata).
## Constructing metadata
A metadata can be created using package [metadata](https://godoc.org/google.golang.org/grpc/metadata).
The type MD is actually a map from string to a list of strings:
```go
type MD map[string][]string
```
Metadata can be read like a normal map.
Note that the value type of this map is `[]string`,
so that users can attach multiple values using a single key.
### Creating a new metadata
A metadata can be created from a `map[string]string` using function `New`:
```go
md := metadata.New(map[string]string{"key1": "val1", "key2": "val2"})
```
Another way is to use `Pairs`.
Values with the same key will be merged into a list:
```go
md := metadata.Pairs(
"key1", "val1",
"key1", "val1-2", // "key1" will have map value []string{"val1", "val1-2"}
"key2", "val2",
)
```
__Note:__ all the keys will be automatically converted to lowercase,
so "key1" and "kEy1" will be the same key and their values will be merged into the same list.
This happens for both `New` and `Pairs`.
### Storing binary data in metadata
In metadata, keys are always strings. But values can be strings or binary data.
To store binary data value in metadata, simply add "-bin" suffix to the key.
The values with "-bin" suffixed keys will be encoded when creating the metadata:
```go
md := metadata.Pairs(
"key", "string value",
"key-bin", string([]byte{96, 102}), // this binary data will be encoded (base64) before sending
// and will be decoded after being transferred.
)
```
## Retrieving metadata from context
Metadata can be retrieved from context using `FromIncomingContext`:
```go
func (s *server) SomeRPC(ctx context.Context, in *pb.SomeRequest) (*pb.SomeResponse, err) {
md, ok := metadata.FromIncomingContext(ctx)
// do something with metadata
}
```
## Sending and receiving metadata - client side
[//]: # "TODO: uncomment next line after example source added"
[//]: # "Real metadata sending and receiving examples are available [here](TODO:example_dir)."
### Sending metadata
To send metadata to server, the client can wrap the metadata into a context using `NewOutgoingContext`, and make the RPC with this context:
```go
md := metadata.Pairs("key", "val")
// create a new context with this metadata
ctx := metadata.NewOutgoingContext(context.Background(), md)
// make unary RPC
response, err := client.SomeRPC(ctx, someRequest)
// or make streaming RPC
stream, err := client.SomeStreamingRPC(ctx)
```
To read this back from the context on the client (e.g. in an interceptor) before the RPC is sent, use `FromOutgoingContext`.
### Receiving metadata
Metadata that a client can receive includes header and trailer.
#### Unary call
Header and trailer sent along with a unary call can be retrieved using function [Header](https://godoc.org/google.golang.org/grpc#Header) and [Trailer](https://godoc.org/google.golang.org/grpc#Trailer) in [CallOption](https://godoc.org/google.golang.org/grpc#CallOption):
```go
var header, trailer metadata.MD // variable to store header and trailer
r, err := client.SomeRPC(
ctx,
someRequest,
grpc.Header(&header), // will retrieve header
grpc.Trailer(&trailer), // will retrieve trailer
)
// do something with header and trailer
```
#### Streaming call
For streaming calls including:
- Server streaming RPC
- Client streaming RPC
- Bidirectional streaming RPC
Header and trailer can be retrieved from the returned stream using function `Header` and `Trailer` in interface [ClientStream](https://godoc.org/google.golang.org/grpc#ClientStream):
```go
stream, err := client.SomeStreamingRPC(ctx)
// retrieve header
header, err := stream.Header()
// retrieve trailer
trailer := stream.Trailer()
```
## Sending and receiving metadata - server side
[//]: # "TODO: uncomment next line after example source added"
[//]: # "Real metadata sending and receiving examples are available [here](TODO:example_dir)."
### Receiving metadata
To read metadata sent by the client, the server needs to retrieve it from RPC context.
If it is a unary call, the RPC handler's context can be used.
For streaming calls, the server needs to get context from the stream.
#### Unary call
```go
func (s *server) SomeRPC(ctx context.Context, in *pb.someRequest) (*pb.someResponse, error) {
md, ok := metadata.FromIncomingContext(ctx)
// do something with metadata
}
```
#### Streaming call
```go
func (s *server) SomeStreamingRPC(stream pb.Service_SomeStreamingRPCServer) error {
md, ok := metadata.FromIncomingContext(stream.Context()) // get context from stream
// do something with metadata
}
```
### Sending metadata
#### Unary call
To send header and trailer to client in unary call, the server can call [SendHeader](https://godoc.org/google.golang.org/grpc#SendHeader) and [SetTrailer](https://godoc.org/google.golang.org/grpc#SetTrailer) functions in module [grpc](https://godoc.org/google.golang.org/grpc).
These two functions take a context as the first parameter.
It should be the RPC handler's context or one derived from it:
```go
func (s *server) SomeRPC(ctx context.Context, in *pb.someRequest) (*pb.someResponse, error) {
// create and send header
header := metadata.Pairs("header-key", "val")
grpc.SendHeader(ctx, header)
// create and set trailer
trailer := metadata.Pairs("trailer-key", "val")
grpc.SetTrailer(ctx, trailer)
}
```
#### Streaming call
For streaming calls, header and trailer can be sent using function `SendHeader` and `SetTrailer` in interface [ServerStream](https://godoc.org/google.golang.org/grpc#ServerStream):
```go
func (s *server) SomeStreamingRPC(stream pb.Service_SomeStreamingRPCServer) error {
// create and send header
header := metadata.Pairs("header-key", "val")
stream.SendHeader(header)
// create and set trailer
trailer := metadata.Pairs("trailer-key", "val")
stream.SetTrailer(trailer)
}
```

View File

@ -0,0 +1,152 @@
# gRPC Server Reflection Tutorial
gRPC Server Reflection provides information about publicly-accessible gRPC
services on a server, and assists clients at runtime to construct RPC
requests and responses without precompiled service information. It is used by
gRPC CLI, which can be used to introspect server protos and send/receive test
RPCs.
## Enable Server Reflection
gRPC-go Server Reflection is implemented in package [reflection](https://github.com/grpc/grpc-go/tree/master/reflection). To enable server reflection, you need to import this package and register reflection service on your gRPC server.
For example, to enable server reflection in `example/helloworld`, we need to make the following changes:
```diff
--- a/examples/helloworld/greeter_server/main.go
+++ b/examples/helloworld/greeter_server/main.go
@@ -40,6 +40,7 @@ import (
"golang.org/x/net/context"
"google.golang.org/grpc"
pb "google.golang.org/grpc/examples/helloworld/helloworld"
+ "google.golang.org/grpc/reflection"
)
const (
@@ -61,6 +62,8 @@ func main() {
}
s := grpc.NewServer()
pb.RegisterGreeterServer(s, &server{})
+ // Register reflection service on gRPC server.
+ reflection.Register(s)
if err := s.Serve(lis); err != nil {
log.Fatalf("failed to serve: %v", err)
}
```
We have made this change in `example/helloworld`, and we will use it as an example to show the use of gRPC server reflection and gRPC CLI in this tutorial.
## gRPC CLI
After enabling Server Reflection in a server application, you can use gRPC CLI to check its services.
gRPC CLI is only available in c++. Instructions on how to use gRPC CLI can be found at [command_line_tool.md](https://github.com/grpc/grpc/blob/master/doc/command_line_tool.md).
To build gRPC CLI:
```sh
git clone https://github.com/grpc/grpc
cd grpc
make grpc_cli
cd bins/opt # grpc_cli is in directory bins/opt/
```
## Use gRPC CLI to check services
First, start the helloworld server in grpc-go directory:
```sh
$ cd <grpc-go-directory>
$ go run examples/helloworld/greeter_server/main.go
```
Open a new terminal and make sure you are in the directory where grpc_cli lives:
```sh
$ cd <grpc-cpp-dirctory>/bins/opt
```
### List services
`grpc_cli ls` command lists services and methods exposed at a given port:
- List all the services exposed at a given port
```sh
$ ./grpc_cli ls localhost:50051
```
output:
```sh
helloworld.Greeter
grpc.reflection.v1alpha.ServerReflection
```
- List one service with details
`grpc_cli ls` command inspects a service given its full name (in the format of
\<package\>.\<service\>). It can print information with a long listing format
when `-l` flag is set. This flag can be used to get more details about a
service.
```sh
$ ./grpc_cli ls localhost:50051 helloworld.Greeter -l
```
output:
```sh
filename: helloworld.proto
package: helloworld;
service Greeter {
rpc SayHello(helloworld.HelloRequest) returns (helloworld.HelloReply) {}
}
```
### List methods
- List one method with details
`grpc_cli ls` command also inspects a method given its full name (in the
format of \<package\>.\<service\>.\<method\>).
```sh
$ ./grpc_cli ls localhost:50051 helloworld.Greeter.SayHello -l
```
output:
```sh
rpc SayHello(helloworld.HelloRequest) returns (helloworld.HelloReply) {}
```
### Inspect message types
We can use`grpc_cli type` command to inspect request/response types given the
full name of the type (in the format of \<package\>.\<type\>).
- Get information about the request type
```sh
$ ./grpc_cli type localhost:50051 helloworld.HelloRequest
```
output:
```sh
message HelloRequest {
optional string name = 1[json_name = "name"];
}
```
### Call a remote method
We can send RPCs to a server and get responses using `grpc_cli call` command.
- Call a unary method
```sh
$ ./grpc_cli call localhost:50051 SayHello "name: 'gRPC CLI'"
```
output:
```sh
message: "Hello gRPC CLI"
```

View File

@ -0,0 +1,34 @@
# Versioning and Releases
Note: This document references terminology defined at http://semver.org.
## Release Frequency
Regular MINOR releases of gRPC-Go are performed every six weeks. Patch releases
to the previous two MINOR releases may be performed on demand or if serious
security problems are discovered.
## Versioning Policy
The gRPC-Go versioning policy follows the Semantic Versioning 2.0.0
specification, with the following exceptions:
- A MINOR version will not _necessarily_ add new functionality.
- MINOR releases will not break backward compatibility, except in the following
circumstances:
- An API was marked as EXPERIMENTAL upon its introduction.
- An API was marked as DEPRECATED in the initial MAJOR release.
- An API is inherently flawed and cannot provide correct or secure behavior.
In these cases, APIs MAY be changed or removed without a MAJOR release.
Otherwise, backward compatibility will be preserved by MINOR releases.
For an API marked as DEPRECATED, an alternative will be available (if
appropriate) for at least three months prior to its removal.
## Release History
Please see our release history on GitHub:
https://github.com/grpc/grpc-go/releases