1
0
mirror of https://github.com/ceph/ceph-csi.git synced 2025-01-06 03:49:30 +00:00
ceph-csi/vendor/github.com/grpc-ecosystem/go-grpc-prometheus/README.md
Madhu Rajanna d5a0606c33 Migrate from dep to go module
Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
2020-03-17 10:44:07 +00:00

248 lines
13 KiB
Markdown

# Go gRPC Interceptors for Prometheus monitoring
[![Travis Build](https://travis-ci.org/grpc-ecosystem/go-grpc-prometheus.svg)](https://travis-ci.org/grpc-ecosystem/go-grpc-prometheus)
[![Go Report Card](https://goreportcard.com/badge/github.com/grpc-ecosystem/go-grpc-prometheus)](http://goreportcard.com/report/grpc-ecosystem/go-grpc-prometheus)
[![GoDoc](http://img.shields.io/badge/GoDoc-Reference-blue.svg)](https://godoc.org/github.com/grpc-ecosystem/go-grpc-prometheus)
[![SourceGraph](https://sourcegraph.com/github.com/grpc-ecosystem/go-grpc-prometheus/-/badge.svg)](https://sourcegraph.com/github.com/grpc-ecosystem/go-grpc-prometheus/?badge)
[![codecov](https://codecov.io/gh/grpc-ecosystem/go-grpc-prometheus/branch/master/graph/badge.svg)](https://codecov.io/gh/grpc-ecosystem/go-grpc-prometheus)
[![Apache 2.0 License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE)
[Prometheus](https://prometheus.io/) monitoring for your [gRPC Go](https://github.com/grpc/grpc-go) servers and clients.
A sister implementation for [gRPC Java](https://github.com/grpc/grpc-java) (same metrics, same semantics) is in [grpc-ecosystem/java-grpc-prometheus](https://github.com/grpc-ecosystem/java-grpc-prometheus).
## Interceptors
[gRPC Go](https://github.com/grpc/grpc-go) recently acquired support for Interceptors, i.e. middleware that is executed
by a gRPC Server before the request is passed onto the user's application logic. It is a perfect way to implement
common patterns: auth, logging and... monitoring.
To use Interceptors in chains, please see [`go-grpc-middleware`](https://github.com/mwitkow/go-grpc-middleware).
## Usage
There are two types of interceptors: client-side and server-side. This package provides monitoring Interceptors for both.
### Server-side
```go
import "github.com/grpc-ecosystem/go-grpc-prometheus"
...
// Initialize your gRPC server's interceptor.
myServer := grpc.NewServer(
grpc.StreamInterceptor(grpc_prometheus.StreamServerInterceptor),
grpc.UnaryInterceptor(grpc_prometheus.UnaryServerInterceptor),
)
// Register your gRPC service implementations.
myservice.RegisterMyServiceServer(s.server, &myServiceImpl{})
// After all your registrations, make sure all of the Prometheus metrics are initialized.
grpc_prometheus.Register(myServer)
// Register Prometheus metrics handler.
http.Handle("/metrics", promhttp.Handler())
...
```
### Client-side
```go
import "github.com/grpc-ecosystem/go-grpc-prometheus"
...
clientConn, err = grpc.Dial(
address,
grpc.WithUnaryInterceptor(grpc_prometheus.UnaryClientInterceptor),
grpc.WithStreamInterceptor(grpc_prometheus.StreamClientInterceptor)
)
client = pb_testproto.NewTestServiceClient(clientConn)
resp, err := client.PingEmpty(s.ctx, &myservice.Request{Msg: "hello"})
...
```
# Metrics
## Labels
All server-side metrics start with `grpc_server` as Prometheus subsystem name. All client-side metrics start with `grpc_client`. Both of them have mirror-concepts. Similarly all methods
contain the same rich labels:
* `grpc_service` - the [gRPC service](http://www.grpc.io/docs/#defining-a-service) name, which is the combination of protobuf `package` and
the `grpc_service` section name. E.g. for `package = mwitkow.testproto` and
`service TestService` the label will be `grpc_service="mwitkow.testproto.TestService"`
* `grpc_method` - the name of the method called on the gRPC service. E.g.
`grpc_method="Ping"`
* `grpc_type` - the gRPC [type of request](http://www.grpc.io/docs/guides/concepts.html#rpc-life-cycle).
Differentiating between the two is important especially for latency measurements.
- `unary` is single request, single response RPC
- `client_stream` is a multi-request, single response RPC
- `server_stream` is a single request, multi-response RPC
- `bidi_stream` is a multi-request, multi-response RPC
Additionally for completed RPCs, the following labels are used:
* `grpc_code` - the human-readable [gRPC status code](https://github.com/grpc/grpc-go/blob/master/codes/codes.go).
The list of all statuses is to long, but here are some common ones:
- `OK` - means the RPC was successful
- `IllegalArgument` - RPC contained bad values
- `Internal` - server-side error not disclosed to the clients
## Counters
The counters and their up to date documentation is in [server_reporter.go](server_reporter.go) and [client_reporter.go](client_reporter.go)
the respective Prometheus handler (usually `/metrics`).
For the purpose of this documentation we will only discuss `grpc_server` metrics. The `grpc_client` ones contain mirror concepts.
For simplicity, let's assume we're tracking a single server-side RPC call of [`mwitkow.testproto.TestService`](examples/testproto/test.proto),
calling the method `PingList`. The call succeeds and returns 20 messages in the stream.
First, immediately after the server receives the call it will increment the
`grpc_server_started_total` and start the handling time clock (if histograms are enabled).
```jsoniq
grpc_server_started_total{grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream"} 1
```
Then the user logic gets invoked. It receives one message from the client containing the request
(it's a `server_stream`):
```jsoniq
grpc_server_msg_received_total{grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream"} 1
```
The user logic may return an error, or send multiple messages back to the client. In this case, on
each of the 20 messages sent back, a counter will be incremented:
```jsoniq
grpc_server_msg_sent_total{grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream"} 20
```
After the call completes, its status (`OK` or other [gRPC status code](https://github.com/grpc/grpc-go/blob/master/codes/codes.go))
and the relevant call labels increment the `grpc_server_handled_total` counter.
```jsoniq
grpc_server_handled_total{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream"} 1
```
## Histograms
[Prometheus histograms](https://prometheus.io/docs/concepts/metric_types/#histogram) are a great way
to measure latency distributions of your RPCs. However, since it is bad practice to have metrics
of [high cardinality](https://prometheus.io/docs/practices/instrumentation/#do-not-overuse-labels)
the latency monitoring metrics are disabled by default. To enable them please call the following
in your server initialization code:
```jsoniq
grpc_prometheus.EnableHandlingTimeHistogram()
```
After the call completes, its handling time will be recorded in a [Prometheus histogram](https://prometheus.io/docs/concepts/metric_types/#histogram)
variable `grpc_server_handling_seconds`. The histogram variable contains three sub-metrics:
* `grpc_server_handling_seconds_count` - the count of all completed RPCs by status and method
* `grpc_server_handling_seconds_sum` - cumulative time of RPCs by status and method, useful for
calculating average handling times
* `grpc_server_handling_seconds_bucket` - contains the counts of RPCs by status and method in respective
handling-time buckets. These buckets can be used by Prometheus to estimate SLAs (see [here](https://prometheus.io/docs/practices/histograms/))
The counter values will look as follows:
```jsoniq
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="0.005"} 1
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="0.01"} 1
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="0.025"} 1
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="0.05"} 1
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="0.1"} 1
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="0.25"} 1
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="0.5"} 1
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="1"} 1
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="2.5"} 1
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="5"} 1
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="10"} 1
grpc_server_handling_seconds_bucket{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream",le="+Inf"} 1
grpc_server_handling_seconds_sum{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream"} 0.0003866430000000001
grpc_server_handling_seconds_count{grpc_code="OK",grpc_method="PingList",grpc_service="mwitkow.testproto.TestService",grpc_type="server_stream"} 1
```
## Useful query examples
Prometheus philosophy is to provide raw metrics to the monitoring system, and
let the aggregations be handled there. The verbosity of above metrics make it possible to have that
flexibility. Here's a couple of useful monitoring queries:
### request inbound rate
```jsoniq
sum(rate(grpc_server_started_total{job="foo"}[1m])) by (grpc_service)
```
For `job="foo"` (common label to differentiate between Prometheus monitoring targets), calculate the
rate of requests per second (1 minute window) for each gRPC `grpc_service` that the job has. Please note
how the `grpc_method` is being omitted here: all methods of a given gRPC service will be summed together.
### unary request error rate
```jsoniq
sum(rate(grpc_server_handled_total{job="foo",grpc_type="unary",grpc_code!="OK"}[1m])) by (grpc_service)
```
For `job="foo"`, calculate the per-`grpc_service` rate of `unary` (1:1) RPCs that failed, i.e. the
ones that didn't finish with `OK` code.
### unary request error percentage
```jsoniq
sum(rate(grpc_server_handled_total{job="foo",grpc_type="unary",grpc_code!="OK"}[1m])) by (grpc_service)
/
sum(rate(grpc_server_started_total{job="foo",grpc_type="unary"}[1m])) by (grpc_service)
* 100.0
```
For `job="foo"`, calculate the percentage of failed requests by service. It's easy to notice that
this is a combination of the two above examples. This is an example of a query you would like to
[alert on](https://prometheus.io/docs/alerting/rules/) in your system for SLA violations, e.g.
"no more than 1% requests should fail".
### average response stream size
```jsoniq
sum(rate(grpc_server_msg_sent_total{job="foo",grpc_type="server_stream"}[10m])) by (grpc_service)
/
sum(rate(grpc_server_started_total{job="foo",grpc_type="server_stream"}[10m])) by (grpc_service)
```
For `job="foo"` what is the `grpc_service`-wide `10m` average of messages returned for all `
server_stream` RPCs. This allows you to track the stream sizes returned by your system, e.g. allows
you to track when clients started to send "wide" queries that ret
Note the divisor is the number of started RPCs, in order to account for in-flight requests.
### 99%-tile latency of unary requests
```jsoniq
histogram_quantile(0.99,
sum(rate(grpc_server_handling_seconds_bucket{job="foo",grpc_type="unary"}[5m])) by (grpc_service,le)
)
```
For `job="foo"`, returns an 99%-tile [quantile estimation](https://prometheus.io/docs/practices/histograms/#quantiles)
of the handling time of RPCs per service. Please note the `5m` rate, this means that the quantile
estimation will take samples in a rolling `5m` window. When combined with other quantiles
(e.g. 50%, 90%), this query gives you tremendous insight into the responsiveness of your system
(e.g. impact of caching).
### percentage of slow unary queries (>250ms)
```jsoniq
100.0 - (
sum(rate(grpc_server_handling_seconds_bucket{job="foo",grpc_type="unary",le="0.25"}[5m])) by (grpc_service)
/
sum(rate(grpc_server_handling_seconds_count{job="foo",grpc_type="unary"}[5m])) by (grpc_service)
) * 100.0
```
For `job="foo"` calculate the by-`grpc_service` fraction of slow requests that took longer than `0.25`
seconds. This query is relatively complex, since the Prometheus aggregations use `le` (less or equal)
buckets, meaning that counting "fast" requests fractions is easier. However, simple maths helps.
This is an example of a query you would like to alert on in your system for SLA violations,
e.g. "less than 1% of requests are slower than 250ms".
## Status
This code has been used since August 2015 as the basis for monitoring of *production* gRPC micro services at [Improbable](https://improbable.io).
## License
`go-grpc-prometheus` is released under the Apache 2.0 license. See the [LICENSE](LICENSE) file for details.