mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-01-12 06:49:45 +00:00
5a66991bb3
updating the kubernetes release to the latest in main go.mod Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
537 lines
20 KiB
Go
537 lines
20 KiB
Go
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
|
||
// Use of this file is governed by the BSD 3-clause license that
|
||
// can be found in the LICENSE.txt file in the project root.
|
||
|
||
package antlr
|
||
|
||
// This enumeration defines the prediction modes available in ANTLR 4 along with
|
||
// utility methods for analyzing configuration sets for conflicts and/or
|
||
// ambiguities.
|
||
|
||
const (
|
||
// PredictionModeSLL represents the SLL(*) prediction mode.
|
||
// This prediction mode ignores the current
|
||
// parser context when making predictions. This is the fastest prediction
|
||
// mode, and provides correct results for many grammars. This prediction
|
||
// mode is more powerful than the prediction mode provided by ANTLR 3, but
|
||
// may result in syntax errors for grammar and input combinations which are
|
||
// not SLL.
|
||
//
|
||
// When using this prediction mode, the parser will either return a correct
|
||
// parse tree (i.e. the same parse tree that would be returned with the
|
||
// [PredictionModeLL] prediction mode), or it will Report a syntax error. If a
|
||
// syntax error is encountered when using the SLL prediction mode,
|
||
// it may be due to either an actual syntax error in the input or indicate
|
||
// that the particular combination of grammar and input requires the more
|
||
// powerful LL prediction abilities to complete successfully.
|
||
//
|
||
// This prediction mode does not provide any guarantees for prediction
|
||
// behavior for syntactically-incorrect inputs.
|
||
//
|
||
PredictionModeSLL = 0
|
||
|
||
// PredictionModeLL represents the LL(*) prediction mode.
|
||
// This prediction mode allows the current parser
|
||
// context to be used for resolving SLL conflicts that occur during
|
||
// prediction. This is the fastest prediction mode that guarantees correct
|
||
// parse results for all combinations of grammars with syntactically correct
|
||
// inputs.
|
||
//
|
||
// When using this prediction mode, the parser will make correct decisions
|
||
// for all syntactically-correct grammar and input combinations. However, in
|
||
// cases where the grammar is truly ambiguous this prediction mode might not
|
||
// report a precise answer for exactly which alternatives are
|
||
// ambiguous.
|
||
//
|
||
// This prediction mode does not provide any guarantees for prediction
|
||
// behavior for syntactically-incorrect inputs.
|
||
//
|
||
PredictionModeLL = 1
|
||
|
||
// PredictionModeLLExactAmbigDetection represents the LL(*) prediction mode
|
||
// with exact ambiguity detection.
|
||
//
|
||
// In addition to the correctness guarantees provided by the [PredictionModeLL] prediction mode,
|
||
// this prediction mode instructs the prediction algorithm to determine the
|
||
// complete and exact set of ambiguous alternatives for every ambiguous
|
||
// decision encountered while parsing.
|
||
//
|
||
// This prediction mode may be used for diagnosing ambiguities during
|
||
// grammar development. Due to the performance overhead of calculating sets
|
||
// of ambiguous alternatives, this prediction mode should be avoided when
|
||
// the exact results are not necessary.
|
||
//
|
||
// This prediction mode does not provide any guarantees for prediction
|
||
// behavior for syntactically-incorrect inputs.
|
||
//
|
||
PredictionModeLLExactAmbigDetection = 2
|
||
)
|
||
|
||
// PredictionModehasSLLConflictTerminatingPrediction computes the SLL prediction termination condition.
|
||
//
|
||
// This method computes the SLL prediction termination condition for both of
|
||
// the following cases:
|
||
//
|
||
// - The usual SLL+LL fallback upon SLL conflict
|
||
// - Pure SLL without LL fallback
|
||
//
|
||
// # Combined SLL+LL Parsing
|
||
//
|
||
// When LL-fallback is enabled upon SLL conflict, correct predictions are
|
||
// ensured regardless of how the termination condition is computed by this
|
||
// method. Due to the substantially higher cost of LL prediction, the
|
||
// prediction should only fall back to LL when the additional lookahead
|
||
// cannot lead to a unique SLL prediction.
|
||
//
|
||
// Assuming combined SLL+LL parsing, an SLL configuration set with only
|
||
// conflicting subsets should fall back to full LL, even if the
|
||
// configuration sets don't resolve to the same alternative, e.g.
|
||
//
|
||
// {1,2} and {3,4}
|
||
//
|
||
// If there is at least one non-conflicting
|
||
// configuration, SLL could continue with the hopes that more lookahead will
|
||
// resolve via one of those non-conflicting configurations.
|
||
//
|
||
// Here's the prediction termination rule them: SLL (for SLL+LL parsing)
|
||
// stops when it sees only conflicting configuration subsets. In contrast,
|
||
// full LL keeps going when there is uncertainty.
|
||
//
|
||
// # Heuristic
|
||
//
|
||
// As a heuristic, we stop prediction when we see any conflicting subset
|
||
// unless we see a state that only has one alternative associated with it.
|
||
// The single-alt-state thing lets prediction continue upon rules like
|
||
// (otherwise, it would admit defeat too soon):
|
||
//
|
||
// [12|1|[], 6|2|[], 12|2|[]]. s : (ID | ID ID?) ;
|
||
//
|
||
// When the [ATN] simulation reaches the state before ';', it has a
|
||
// [DFA] state that looks like:
|
||
//
|
||
// [12|1|[], 6|2|[], 12|2|[]]
|
||
//
|
||
// Naturally
|
||
//
|
||
// 12|1|[] and 12|2|[]
|
||
//
|
||
// conflict, but we cannot stop processing this node because alternative to has another way to continue,
|
||
// via
|
||
//
|
||
// [6|2|[]]
|
||
//
|
||
// It also let's us continue for this rule:
|
||
//
|
||
// [1|1|[], 1|2|[], 8|3|[]] a : A | A | A B ;
|
||
//
|
||
// After Matching input A, we reach the stop state for rule A, state 1.
|
||
// State 8 is the state immediately before B. Clearly alternatives 1 and 2
|
||
// conflict and no amount of further lookahead will separate the two.
|
||
// However, alternative 3 will be able to continue, and so we do not stop
|
||
// working on this state. In the previous example, we're concerned with
|
||
// states associated with the conflicting alternatives. Here alt 3 is not
|
||
// associated with the conflicting configs, but since we can continue
|
||
// looking for input reasonably, don't declare the state done.
|
||
//
|
||
// # Pure SLL Parsing
|
||
//
|
||
// To handle pure SLL parsing, all we have to do is make sure that we
|
||
// combine stack contexts for configurations that differ only by semantic
|
||
// predicate. From there, we can do the usual SLL termination heuristic.
|
||
//
|
||
// # Predicates in SLL+LL Parsing
|
||
//
|
||
// SLL decisions don't evaluate predicates until after they reach [DFA] stop
|
||
// states because they need to create the [DFA] cache that works in all
|
||
// semantic situations. In contrast, full LL evaluates predicates collected
|
||
// during start state computation, so it can ignore predicates thereafter.
|
||
// This means that SLL termination detection can totally ignore semantic
|
||
// predicates.
|
||
//
|
||
// Implementation-wise, [ATNConfigSet] combines stack contexts but not
|
||
// semantic predicate contexts, so we might see two configurations like the
|
||
// following:
|
||
//
|
||
// (s, 1, x, {}), (s, 1, x', {p})
|
||
//
|
||
// Before testing these configurations against others, we have to merge
|
||
// x and x' (without modifying the existing configurations).
|
||
// For example, we test (x+x')==x” when looking for conflicts in
|
||
// the following configurations:
|
||
//
|
||
// (s, 1, x, {}), (s, 1, x', {p}), (s, 2, x”, {})
|
||
//
|
||
// If the configuration set has predicates (as indicated by
|
||
// [ATNConfigSet.hasSemanticContext]), this algorithm makes a copy of
|
||
// the configurations to strip out all the predicates so that a standard
|
||
// [ATNConfigSet] will merge everything ignoring predicates.
|
||
func PredictionModehasSLLConflictTerminatingPrediction(mode int, configs *ATNConfigSet) bool {
|
||
|
||
// Configs in rule stop states indicate reaching the end of the decision
|
||
// rule (local context) or end of start rule (full context). If all
|
||
// configs meet this condition, then none of the configurations is able
|
||
// to Match additional input, so we terminate prediction.
|
||
//
|
||
if PredictionModeallConfigsInRuleStopStates(configs) {
|
||
return true
|
||
}
|
||
|
||
// pure SLL mode parsing
|
||
if mode == PredictionModeSLL {
|
||
// Don't bother with combining configs from different semantic
|
||
// contexts if we can fail over to full LL costs more time
|
||
// since we'll often fail over anyway.
|
||
if configs.hasSemanticContext {
|
||
// dup configs, tossing out semantic predicates
|
||
dup := NewATNConfigSet(false)
|
||
for _, c := range configs.configs {
|
||
|
||
// NewATNConfig({semanticContext:}, c)
|
||
c = NewATNConfig2(c, SemanticContextNone)
|
||
dup.Add(c, nil)
|
||
}
|
||
configs = dup
|
||
}
|
||
// now we have combined contexts for configs with dissimilar predicates
|
||
}
|
||
// pure SLL or combined SLL+LL mode parsing
|
||
altsets := PredictionModegetConflictingAltSubsets(configs)
|
||
return PredictionModehasConflictingAltSet(altsets) && !PredictionModehasStateAssociatedWithOneAlt(configs)
|
||
}
|
||
|
||
// PredictionModehasConfigInRuleStopState checks if any configuration in the given configs is in a
|
||
// [RuleStopState]. Configurations meeting this condition have reached
|
||
// the end of the decision rule (local context) or end of start rule (full
|
||
// context).
|
||
//
|
||
// The func returns true if any configuration in the supplied configs is in a [RuleStopState]
|
||
func PredictionModehasConfigInRuleStopState(configs *ATNConfigSet) bool {
|
||
for _, c := range configs.configs {
|
||
if _, ok := c.GetState().(*RuleStopState); ok {
|
||
return true
|
||
}
|
||
}
|
||
return false
|
||
}
|
||
|
||
// PredictionModeallConfigsInRuleStopStates checks if all configurations in configs are in a
|
||
// [RuleStopState]. Configurations meeting this condition have reached
|
||
// the end of the decision rule (local context) or end of start rule (full
|
||
// context).
|
||
//
|
||
// the func returns true if all configurations in configs are in a
|
||
// [RuleStopState]
|
||
func PredictionModeallConfigsInRuleStopStates(configs *ATNConfigSet) bool {
|
||
|
||
for _, c := range configs.configs {
|
||
if _, ok := c.GetState().(*RuleStopState); !ok {
|
||
return false
|
||
}
|
||
}
|
||
return true
|
||
}
|
||
|
||
// PredictionModeresolvesToJustOneViableAlt checks full LL prediction termination.
|
||
//
|
||
// Can we stop looking ahead during [ATN] simulation or is there some
|
||
// uncertainty as to which alternative we will ultimately pick, after
|
||
// consuming more input? Even if there are partial conflicts, we might know
|
||
// that everything is going to resolve to the same minimum alternative. That
|
||
// means we can stop since no more lookahead will change that fact. On the
|
||
// other hand, there might be multiple conflicts that resolve to different
|
||
// minimums. That means we need more look ahead to decide which of those
|
||
// alternatives we should predict.
|
||
//
|
||
// The basic idea is to split the set of configurations 'C', into
|
||
// conflicting subsets (s, _, ctx, _) and singleton subsets with
|
||
// non-conflicting configurations. Two configurations conflict if they have
|
||
// identical [ATNConfig].state and [ATNConfig].context values
|
||
// but a different [ATNConfig].alt value, e.g.
|
||
//
|
||
// (s, i, ctx, _)
|
||
//
|
||
// and
|
||
//
|
||
// (s, j, ctx, _) ; for i != j
|
||
//
|
||
// Reduce these configuration subsets to the set of possible alternatives.
|
||
// You can compute the alternative subsets in one pass as follows:
|
||
//
|
||
// A_s,ctx = {i | (s, i, ctx, _)}
|
||
//
|
||
// for each configuration in C holding s and ctx fixed.
|
||
//
|
||
// Or in pseudo-code:
|
||
//
|
||
// for each configuration c in C:
|
||
// map[c] U = c.ATNConfig.alt alt // map hash/equals uses s and x, not alt and not pred
|
||
//
|
||
// The values in map are the set of
|
||
//
|
||
// A_s,ctx
|
||
//
|
||
// sets.
|
||
//
|
||
// If
|
||
//
|
||
// |A_s,ctx| = 1
|
||
//
|
||
// then there is no conflict associated with s and ctx.
|
||
//
|
||
// Reduce the subsets to singletons by choosing a minimum of each subset. If
|
||
// the union of these alternative subsets is a singleton, then no amount of
|
||
// further lookahead will help us. We will always pick that alternative. If,
|
||
// however, there is more than one alternative, then we are uncertain which
|
||
// alternative to predict and must continue looking for resolution. We may
|
||
// or may not discover an ambiguity in the future, even if there are no
|
||
// conflicting subsets this round.
|
||
//
|
||
// The biggest sin is to terminate early because it means we've made a
|
||
// decision but were uncertain as to the eventual outcome. We haven't used
|
||
// enough lookahead. On the other hand, announcing a conflict too late is no
|
||
// big deal; you will still have the conflict. It's just inefficient. It
|
||
// might even look until the end of file.
|
||
//
|
||
// No special consideration for semantic predicates is required because
|
||
// predicates are evaluated on-the-fly for full LL prediction, ensuring that
|
||
// no configuration contains a semantic context during the termination
|
||
// check.
|
||
//
|
||
// # Conflicting Configs
|
||
//
|
||
// Two configurations:
|
||
//
|
||
// (s, i, x) and (s, j, x')
|
||
//
|
||
// conflict when i != j but x = x'. Because we merge all
|
||
// (s, i, _) configurations together, that means that there are at
|
||
// most n configurations associated with state s for
|
||
// n possible alternatives in the decision. The merged stacks
|
||
// complicate the comparison of configuration contexts x and x'.
|
||
//
|
||
// Sam checks to see if one is a subset of the other by calling
|
||
// merge and checking to see if the merged result is either x or x'.
|
||
// If the x associated with lowest alternative i
|
||
// is the superset, then i is the only possible prediction since the
|
||
// others resolve to min(i) as well. However, if x is
|
||
// associated with j > i then at least one stack configuration for
|
||
// j is not in conflict with alternative i. The algorithm
|
||
// should keep going, looking for more lookahead due to the uncertainty.
|
||
//
|
||
// For simplicity, I'm doing an equality check between x and
|
||
// x', which lets the algorithm continue to consume lookahead longer
|
||
// than necessary. The reason I like the equality is of course the
|
||
// simplicity but also because that is the test you need to detect the
|
||
// alternatives that are actually in conflict.
|
||
//
|
||
// # Continue/Stop Rule
|
||
//
|
||
// Continue if the union of resolved alternative sets from non-conflicting and
|
||
// conflicting alternative subsets has more than one alternative. We are
|
||
// uncertain about which alternative to predict.
|
||
//
|
||
// The complete set of alternatives,
|
||
//
|
||
// [i for (_, i, _)]
|
||
//
|
||
// tells us which alternatives are still in the running for the amount of input we've
|
||
// consumed at this point. The conflicting sets let us to strip away
|
||
// configurations that won't lead to more states because we resolve
|
||
// conflicts to the configuration with a minimum alternate for the
|
||
// conflicting set.
|
||
//
|
||
// Cases
|
||
//
|
||
// - no conflicts and more than 1 alternative in set => continue
|
||
// - (s, 1, x), (s, 2, x), (s, 3, z), (s', 1, y), (s', 2, y) yields non-conflicting set
|
||
// {3} ∪ conflicting sets min({1,2}) ∪ min({1,2}) = {1,3} => continue
|
||
// - (s, 1, x), (s, 2, x), (s', 1, y), (s', 2, y), (s”, 1, z) yields non-conflicting set
|
||
// {1} ∪ conflicting sets min({1,2}) ∪ min({1,2}) = {1} => stop and predict 1
|
||
// - (s, 1, x), (s, 2, x), (s', 1, y), (s', 2, y) yields conflicting, reduced sets
|
||
// {1} ∪ {1} = {1} => stop and predict 1, can announce ambiguity {1,2}
|
||
// - (s, 1, x), (s, 2, x), (s', 2, y), (s', 3, y) yields conflicting, reduced sets
|
||
// {1} ∪ {2} = {1,2} => continue
|
||
// - (s, 1, x), (s, 2, x), (s', 2, y), (s', 3, y) yields conflicting, reduced sets
|
||
// {1} ∪ {2} = {1,2} => continue
|
||
// - (s, 1, x), (s, 2, x), (s', 3, y), (s', 4, y) yields conflicting, reduced sets
|
||
// {1} ∪ {3} = {1,3} => continue
|
||
//
|
||
// # Exact Ambiguity Detection
|
||
//
|
||
// If all states report the same conflicting set of alternatives, then we
|
||
// know we have the exact ambiguity set:
|
||
//
|
||
// |A_i| > 1
|
||
//
|
||
// and
|
||
//
|
||
// A_i = A_j ; for all i, j
|
||
//
|
||
// In other words, we continue examining lookahead until all A_i
|
||
// have more than one alternative and all A_i are the same. If
|
||
//
|
||
// A={{1,2}, {1,3}}
|
||
//
|
||
// then regular LL prediction would terminate because the resolved set is {1}.
|
||
// To determine what the real ambiguity is, we have to know whether the ambiguity is between one and
|
||
// two or one and three so we keep going. We can only stop prediction when
|
||
// we need exact ambiguity detection when the sets look like:
|
||
//
|
||
// A={{1,2}}
|
||
//
|
||
// or
|
||
//
|
||
// {{1,2},{1,2}}, etc...
|
||
func PredictionModeresolvesToJustOneViableAlt(altsets []*BitSet) int {
|
||
return PredictionModegetSingleViableAlt(altsets)
|
||
}
|
||
|
||
// PredictionModeallSubsetsConflict determines if every alternative subset in altsets contains more
|
||
// than one alternative.
|
||
//
|
||
// The func returns true if every [BitSet] in altsets has
|
||
// [BitSet].cardinality cardinality > 1
|
||
func PredictionModeallSubsetsConflict(altsets []*BitSet) bool {
|
||
return !PredictionModehasNonConflictingAltSet(altsets)
|
||
}
|
||
|
||
// PredictionModehasNonConflictingAltSet determines if any single alternative subset in altsets contains
|
||
// exactly one alternative.
|
||
//
|
||
// The func returns true if altsets contains at least one [BitSet] with
|
||
// [BitSet].cardinality cardinality 1
|
||
func PredictionModehasNonConflictingAltSet(altsets []*BitSet) bool {
|
||
for i := 0; i < len(altsets); i++ {
|
||
alts := altsets[i]
|
||
if alts.length() == 1 {
|
||
return true
|
||
}
|
||
}
|
||
return false
|
||
}
|
||
|
||
// PredictionModehasConflictingAltSet determines if any single alternative subset in altsets contains
|
||
// more than one alternative.
|
||
//
|
||
// The func returns true if altsets contains a [BitSet] with
|
||
// [BitSet].cardinality cardinality > 1, otherwise false
|
||
func PredictionModehasConflictingAltSet(altsets []*BitSet) bool {
|
||
for i := 0; i < len(altsets); i++ {
|
||
alts := altsets[i]
|
||
if alts.length() > 1 {
|
||
return true
|
||
}
|
||
}
|
||
return false
|
||
}
|
||
|
||
// PredictionModeallSubsetsEqual determines if every alternative subset in altsets is equivalent.
|
||
//
|
||
// The func returns true if every member of altsets is equal to the others.
|
||
func PredictionModeallSubsetsEqual(altsets []*BitSet) bool {
|
||
var first *BitSet
|
||
|
||
for i := 0; i < len(altsets); i++ {
|
||
alts := altsets[i]
|
||
if first == nil {
|
||
first = alts
|
||
} else if alts != first {
|
||
return false
|
||
}
|
||
}
|
||
|
||
return true
|
||
}
|
||
|
||
// PredictionModegetUniqueAlt returns the unique alternative predicted by all alternative subsets in
|
||
// altsets. If no such alternative exists, this method returns
|
||
// [ATNInvalidAltNumber].
|
||
//
|
||
// @param altsets a collection of alternative subsets
|
||
func PredictionModegetUniqueAlt(altsets []*BitSet) int {
|
||
all := PredictionModeGetAlts(altsets)
|
||
if all.length() == 1 {
|
||
return all.minValue()
|
||
}
|
||
|
||
return ATNInvalidAltNumber
|
||
}
|
||
|
||
// PredictionModeGetAlts returns the complete set of represented alternatives for a collection of
|
||
// alternative subsets. This method returns the union of each [BitSet]
|
||
// in altsets, being the set of represented alternatives in altsets.
|
||
func PredictionModeGetAlts(altsets []*BitSet) *BitSet {
|
||
all := NewBitSet()
|
||
for _, alts := range altsets {
|
||
all.or(alts)
|
||
}
|
||
return all
|
||
}
|
||
|
||
// PredictionModegetConflictingAltSubsets gets the conflicting alt subsets from a configuration set.
|
||
//
|
||
// for each configuration c in configs:
|
||
// map[c] U= c.ATNConfig.alt // map hash/equals uses s and x, not alt and not pred
|
||
func PredictionModegetConflictingAltSubsets(configs *ATNConfigSet) []*BitSet {
|
||
configToAlts := NewJMap[*ATNConfig, *BitSet, *ATNAltConfigComparator[*ATNConfig]](atnAltCfgEqInst, AltSetCollection, "PredictionModegetConflictingAltSubsets()")
|
||
|
||
for _, c := range configs.configs {
|
||
|
||
alts, ok := configToAlts.Get(c)
|
||
if !ok {
|
||
alts = NewBitSet()
|
||
configToAlts.Put(c, alts)
|
||
}
|
||
alts.add(c.GetAlt())
|
||
}
|
||
|
||
return configToAlts.Values()
|
||
}
|
||
|
||
// PredictionModeGetStateToAltMap gets a map from state to alt subset from a configuration set.
|
||
//
|
||
// for each configuration c in configs:
|
||
// map[c.ATNConfig.state] U= c.ATNConfig.alt}
|
||
func PredictionModeGetStateToAltMap(configs *ATNConfigSet) *AltDict {
|
||
m := NewAltDict()
|
||
|
||
for _, c := range configs.configs {
|
||
alts := m.Get(c.GetState().String())
|
||
if alts == nil {
|
||
alts = NewBitSet()
|
||
m.put(c.GetState().String(), alts)
|
||
}
|
||
alts.(*BitSet).add(c.GetAlt())
|
||
}
|
||
return m
|
||
}
|
||
|
||
func PredictionModehasStateAssociatedWithOneAlt(configs *ATNConfigSet) bool {
|
||
values := PredictionModeGetStateToAltMap(configs).values()
|
||
for i := 0; i < len(values); i++ {
|
||
if values[i].(*BitSet).length() == 1 {
|
||
return true
|
||
}
|
||
}
|
||
return false
|
||
}
|
||
|
||
// PredictionModegetSingleViableAlt gets the single alternative predicted by all alternative subsets in altsets
|
||
// if there is one.
|
||
//
|
||
// TODO: JI - Review this code - it does not seem to do the same thing as the Java code - maybe because [BitSet] is not like the Java utils BitSet
|
||
func PredictionModegetSingleViableAlt(altsets []*BitSet) int {
|
||
result := ATNInvalidAltNumber
|
||
|
||
for i := 0; i < len(altsets); i++ {
|
||
alts := altsets[i]
|
||
minAlt := alts.minValue()
|
||
if result == ATNInvalidAltNumber {
|
||
result = minAlt
|
||
} else if result != minAlt { // more than 1 viable alt
|
||
return ATNInvalidAltNumber
|
||
}
|
||
}
|
||
return result
|
||
}
|