ceph-csi/vendor/github.com/antlr4-go/antlr/v4/prediction_mode.go
Madhu Rajanna 5a66991bb3 rebase: update kubernetes to latest
updating the kubernetes release to the
latest in main go.mod

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
2024-08-20 08:17:01 +00:00

537 lines
20 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
// This enumeration defines the prediction modes available in ANTLR 4 along with
// utility methods for analyzing configuration sets for conflicts and/or
// ambiguities.
const (
// PredictionModeSLL represents the SLL(*) prediction mode.
// This prediction mode ignores the current
// parser context when making predictions. This is the fastest prediction
// mode, and provides correct results for many grammars. This prediction
// mode is more powerful than the prediction mode provided by ANTLR 3, but
// may result in syntax errors for grammar and input combinations which are
// not SLL.
//
// When using this prediction mode, the parser will either return a correct
// parse tree (i.e. the same parse tree that would be returned with the
// [PredictionModeLL] prediction mode), or it will Report a syntax error. If a
// syntax error is encountered when using the SLL prediction mode,
// it may be due to either an actual syntax error in the input or indicate
// that the particular combination of grammar and input requires the more
// powerful LL prediction abilities to complete successfully.
//
// This prediction mode does not provide any guarantees for prediction
// behavior for syntactically-incorrect inputs.
//
PredictionModeSLL = 0
// PredictionModeLL represents the LL(*) prediction mode.
// This prediction mode allows the current parser
// context to be used for resolving SLL conflicts that occur during
// prediction. This is the fastest prediction mode that guarantees correct
// parse results for all combinations of grammars with syntactically correct
// inputs.
//
// When using this prediction mode, the parser will make correct decisions
// for all syntactically-correct grammar and input combinations. However, in
// cases where the grammar is truly ambiguous this prediction mode might not
// report a precise answer for exactly which alternatives are
// ambiguous.
//
// This prediction mode does not provide any guarantees for prediction
// behavior for syntactically-incorrect inputs.
//
PredictionModeLL = 1
// PredictionModeLLExactAmbigDetection represents the LL(*) prediction mode
// with exact ambiguity detection.
//
// In addition to the correctness guarantees provided by the [PredictionModeLL] prediction mode,
// this prediction mode instructs the prediction algorithm to determine the
// complete and exact set of ambiguous alternatives for every ambiguous
// decision encountered while parsing.
//
// This prediction mode may be used for diagnosing ambiguities during
// grammar development. Due to the performance overhead of calculating sets
// of ambiguous alternatives, this prediction mode should be avoided when
// the exact results are not necessary.
//
// This prediction mode does not provide any guarantees for prediction
// behavior for syntactically-incorrect inputs.
//
PredictionModeLLExactAmbigDetection = 2
)
// PredictionModehasSLLConflictTerminatingPrediction computes the SLL prediction termination condition.
//
// This method computes the SLL prediction termination condition for both of
// the following cases:
//
// - The usual SLL+LL fallback upon SLL conflict
// - Pure SLL without LL fallback
//
// # Combined SLL+LL Parsing
//
// When LL-fallback is enabled upon SLL conflict, correct predictions are
// ensured regardless of how the termination condition is computed by this
// method. Due to the substantially higher cost of LL prediction, the
// prediction should only fall back to LL when the additional lookahead
// cannot lead to a unique SLL prediction.
//
// Assuming combined SLL+LL parsing, an SLL configuration set with only
// conflicting subsets should fall back to full LL, even if the
// configuration sets don't resolve to the same alternative, e.g.
//
// {1,2} and {3,4}
//
// If there is at least one non-conflicting
// configuration, SLL could continue with the hopes that more lookahead will
// resolve via one of those non-conflicting configurations.
//
// Here's the prediction termination rule them: SLL (for SLL+LL parsing)
// stops when it sees only conflicting configuration subsets. In contrast,
// full LL keeps going when there is uncertainty.
//
// # Heuristic
//
// As a heuristic, we stop prediction when we see any conflicting subset
// unless we see a state that only has one alternative associated with it.
// The single-alt-state thing lets prediction continue upon rules like
// (otherwise, it would admit defeat too soon):
//
// [12|1|[], 6|2|[], 12|2|[]]. s : (ID | ID ID?) ;
//
// When the [ATN] simulation reaches the state before ';', it has a
// [DFA] state that looks like:
//
// [12|1|[], 6|2|[], 12|2|[]]
//
// Naturally
//
// 12|1|[] and 12|2|[]
//
// conflict, but we cannot stop processing this node because alternative to has another way to continue,
// via
//
// [6|2|[]]
//
// It also let's us continue for this rule:
//
// [1|1|[], 1|2|[], 8|3|[]] a : A | A | A B ;
//
// After Matching input A, we reach the stop state for rule A, state 1.
// State 8 is the state immediately before B. Clearly alternatives 1 and 2
// conflict and no amount of further lookahead will separate the two.
// However, alternative 3 will be able to continue, and so we do not stop
// working on this state. In the previous example, we're concerned with
// states associated with the conflicting alternatives. Here alt 3 is not
// associated with the conflicting configs, but since we can continue
// looking for input reasonably, don't declare the state done.
//
// # Pure SLL Parsing
//
// To handle pure SLL parsing, all we have to do is make sure that we
// combine stack contexts for configurations that differ only by semantic
// predicate. From there, we can do the usual SLL termination heuristic.
//
// # Predicates in SLL+LL Parsing
//
// SLL decisions don't evaluate predicates until after they reach [DFA] stop
// states because they need to create the [DFA] cache that works in all
// semantic situations. In contrast, full LL evaluates predicates collected
// during start state computation, so it can ignore predicates thereafter.
// This means that SLL termination detection can totally ignore semantic
// predicates.
//
// Implementation-wise, [ATNConfigSet] combines stack contexts but not
// semantic predicate contexts, so we might see two configurations like the
// following:
//
// (s, 1, x, {}), (s, 1, x', {p})
//
// Before testing these configurations against others, we have to merge
// x and x' (without modifying the existing configurations).
// For example, we test (x+x')==x” when looking for conflicts in
// the following configurations:
//
// (s, 1, x, {}), (s, 1, x', {p}), (s, 2, x”, {})
//
// If the configuration set has predicates (as indicated by
// [ATNConfigSet.hasSemanticContext]), this algorithm makes a copy of
// the configurations to strip out all the predicates so that a standard
// [ATNConfigSet] will merge everything ignoring predicates.
func PredictionModehasSLLConflictTerminatingPrediction(mode int, configs *ATNConfigSet) bool {
// Configs in rule stop states indicate reaching the end of the decision
// rule (local context) or end of start rule (full context). If all
// configs meet this condition, then none of the configurations is able
// to Match additional input, so we terminate prediction.
//
if PredictionModeallConfigsInRuleStopStates(configs) {
return true
}
// pure SLL mode parsing
if mode == PredictionModeSLL {
// Don't bother with combining configs from different semantic
// contexts if we can fail over to full LL costs more time
// since we'll often fail over anyway.
if configs.hasSemanticContext {
// dup configs, tossing out semantic predicates
dup := NewATNConfigSet(false)
for _, c := range configs.configs {
// NewATNConfig({semanticContext:}, c)
c = NewATNConfig2(c, SemanticContextNone)
dup.Add(c, nil)
}
configs = dup
}
// now we have combined contexts for configs with dissimilar predicates
}
// pure SLL or combined SLL+LL mode parsing
altsets := PredictionModegetConflictingAltSubsets(configs)
return PredictionModehasConflictingAltSet(altsets) && !PredictionModehasStateAssociatedWithOneAlt(configs)
}
// PredictionModehasConfigInRuleStopState checks if any configuration in the given configs is in a
// [RuleStopState]. Configurations meeting this condition have reached
// the end of the decision rule (local context) or end of start rule (full
// context).
//
// The func returns true if any configuration in the supplied configs is in a [RuleStopState]
func PredictionModehasConfigInRuleStopState(configs *ATNConfigSet) bool {
for _, c := range configs.configs {
if _, ok := c.GetState().(*RuleStopState); ok {
return true
}
}
return false
}
// PredictionModeallConfigsInRuleStopStates checks if all configurations in configs are in a
// [RuleStopState]. Configurations meeting this condition have reached
// the end of the decision rule (local context) or end of start rule (full
// context).
//
// the func returns true if all configurations in configs are in a
// [RuleStopState]
func PredictionModeallConfigsInRuleStopStates(configs *ATNConfigSet) bool {
for _, c := range configs.configs {
if _, ok := c.GetState().(*RuleStopState); !ok {
return false
}
}
return true
}
// PredictionModeresolvesToJustOneViableAlt checks full LL prediction termination.
//
// Can we stop looking ahead during [ATN] simulation or is there some
// uncertainty as to which alternative we will ultimately pick, after
// consuming more input? Even if there are partial conflicts, we might know
// that everything is going to resolve to the same minimum alternative. That
// means we can stop since no more lookahead will change that fact. On the
// other hand, there might be multiple conflicts that resolve to different
// minimums. That means we need more look ahead to decide which of those
// alternatives we should predict.
//
// The basic idea is to split the set of configurations 'C', into
// conflicting subsets (s, _, ctx, _) and singleton subsets with
// non-conflicting configurations. Two configurations conflict if they have
// identical [ATNConfig].state and [ATNConfig].context values
// but a different [ATNConfig].alt value, e.g.
//
// (s, i, ctx, _)
//
// and
//
// (s, j, ctx, _) ; for i != j
//
// Reduce these configuration subsets to the set of possible alternatives.
// You can compute the alternative subsets in one pass as follows:
//
// A_s,ctx = {i | (s, i, ctx, _)}
//
// for each configuration in C holding s and ctx fixed.
//
// Or in pseudo-code:
//
// for each configuration c in C:
// map[c] U = c.ATNConfig.alt alt // map hash/equals uses s and x, not alt and not pred
//
// The values in map are the set of
//
// A_s,ctx
//
// sets.
//
// If
//
// |A_s,ctx| = 1
//
// then there is no conflict associated with s and ctx.
//
// Reduce the subsets to singletons by choosing a minimum of each subset. If
// the union of these alternative subsets is a singleton, then no amount of
// further lookahead will help us. We will always pick that alternative. If,
// however, there is more than one alternative, then we are uncertain which
// alternative to predict and must continue looking for resolution. We may
// or may not discover an ambiguity in the future, even if there are no
// conflicting subsets this round.
//
// The biggest sin is to terminate early because it means we've made a
// decision but were uncertain as to the eventual outcome. We haven't used
// enough lookahead. On the other hand, announcing a conflict too late is no
// big deal; you will still have the conflict. It's just inefficient. It
// might even look until the end of file.
//
// No special consideration for semantic predicates is required because
// predicates are evaluated on-the-fly for full LL prediction, ensuring that
// no configuration contains a semantic context during the termination
// check.
//
// # Conflicting Configs
//
// Two configurations:
//
// (s, i, x) and (s, j, x')
//
// conflict when i != j but x = x'. Because we merge all
// (s, i, _) configurations together, that means that there are at
// most n configurations associated with state s for
// n possible alternatives in the decision. The merged stacks
// complicate the comparison of configuration contexts x and x'.
//
// Sam checks to see if one is a subset of the other by calling
// merge and checking to see if the merged result is either x or x'.
// If the x associated with lowest alternative i
// is the superset, then i is the only possible prediction since the
// others resolve to min(i) as well. However, if x is
// associated with j > i then at least one stack configuration for
// j is not in conflict with alternative i. The algorithm
// should keep going, looking for more lookahead due to the uncertainty.
//
// For simplicity, I'm doing an equality check between x and
// x', which lets the algorithm continue to consume lookahead longer
// than necessary. The reason I like the equality is of course the
// simplicity but also because that is the test you need to detect the
// alternatives that are actually in conflict.
//
// # Continue/Stop Rule
//
// Continue if the union of resolved alternative sets from non-conflicting and
// conflicting alternative subsets has more than one alternative. We are
// uncertain about which alternative to predict.
//
// The complete set of alternatives,
//
// [i for (_, i, _)]
//
// tells us which alternatives are still in the running for the amount of input we've
// consumed at this point. The conflicting sets let us to strip away
// configurations that won't lead to more states because we resolve
// conflicts to the configuration with a minimum alternate for the
// conflicting set.
//
// Cases
//
// - no conflicts and more than 1 alternative in set => continue
// - (s, 1, x), (s, 2, x), (s, 3, z), (s', 1, y), (s', 2, y) yields non-conflicting set
// {3} conflicting sets min({1,2}) min({1,2}) = {1,3} => continue
// - (s, 1, x), (s, 2, x), (s', 1, y), (s', 2, y), (s”, 1, z) yields non-conflicting set
// {1} conflicting sets min({1,2}) min({1,2}) = {1} => stop and predict 1
// - (s, 1, x), (s, 2, x), (s', 1, y), (s', 2, y) yields conflicting, reduced sets
// {1} {1} = {1} => stop and predict 1, can announce ambiguity {1,2}
// - (s, 1, x), (s, 2, x), (s', 2, y), (s', 3, y) yields conflicting, reduced sets
// {1} {2} = {1,2} => continue
// - (s, 1, x), (s, 2, x), (s', 2, y), (s', 3, y) yields conflicting, reduced sets
// {1} {2} = {1,2} => continue
// - (s, 1, x), (s, 2, x), (s', 3, y), (s', 4, y) yields conflicting, reduced sets
// {1} {3} = {1,3} => continue
//
// # Exact Ambiguity Detection
//
// If all states report the same conflicting set of alternatives, then we
// know we have the exact ambiguity set:
//
// |A_i| > 1
//
// and
//
// A_i = A_j ; for all i, j
//
// In other words, we continue examining lookahead until all A_i
// have more than one alternative and all A_i are the same. If
//
// A={{1,2}, {1,3}}
//
// then regular LL prediction would terminate because the resolved set is {1}.
// To determine what the real ambiguity is, we have to know whether the ambiguity is between one and
// two or one and three so we keep going. We can only stop prediction when
// we need exact ambiguity detection when the sets look like:
//
// A={{1,2}}
//
// or
//
// {{1,2},{1,2}}, etc...
func PredictionModeresolvesToJustOneViableAlt(altsets []*BitSet) int {
return PredictionModegetSingleViableAlt(altsets)
}
// PredictionModeallSubsetsConflict determines if every alternative subset in altsets contains more
// than one alternative.
//
// The func returns true if every [BitSet] in altsets has
// [BitSet].cardinality cardinality > 1
func PredictionModeallSubsetsConflict(altsets []*BitSet) bool {
return !PredictionModehasNonConflictingAltSet(altsets)
}
// PredictionModehasNonConflictingAltSet determines if any single alternative subset in altsets contains
// exactly one alternative.
//
// The func returns true if altsets contains at least one [BitSet] with
// [BitSet].cardinality cardinality 1
func PredictionModehasNonConflictingAltSet(altsets []*BitSet) bool {
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
if alts.length() == 1 {
return true
}
}
return false
}
// PredictionModehasConflictingAltSet determines if any single alternative subset in altsets contains
// more than one alternative.
//
// The func returns true if altsets contains a [BitSet] with
// [BitSet].cardinality cardinality > 1, otherwise false
func PredictionModehasConflictingAltSet(altsets []*BitSet) bool {
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
if alts.length() > 1 {
return true
}
}
return false
}
// PredictionModeallSubsetsEqual determines if every alternative subset in altsets is equivalent.
//
// The func returns true if every member of altsets is equal to the others.
func PredictionModeallSubsetsEqual(altsets []*BitSet) bool {
var first *BitSet
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
if first == nil {
first = alts
} else if alts != first {
return false
}
}
return true
}
// PredictionModegetUniqueAlt returns the unique alternative predicted by all alternative subsets in
// altsets. If no such alternative exists, this method returns
// [ATNInvalidAltNumber].
//
// @param altsets a collection of alternative subsets
func PredictionModegetUniqueAlt(altsets []*BitSet) int {
all := PredictionModeGetAlts(altsets)
if all.length() == 1 {
return all.minValue()
}
return ATNInvalidAltNumber
}
// PredictionModeGetAlts returns the complete set of represented alternatives for a collection of
// alternative subsets. This method returns the union of each [BitSet]
// in altsets, being the set of represented alternatives in altsets.
func PredictionModeGetAlts(altsets []*BitSet) *BitSet {
all := NewBitSet()
for _, alts := range altsets {
all.or(alts)
}
return all
}
// PredictionModegetConflictingAltSubsets gets the conflicting alt subsets from a configuration set.
//
// for each configuration c in configs:
// map[c] U= c.ATNConfig.alt // map hash/equals uses s and x, not alt and not pred
func PredictionModegetConflictingAltSubsets(configs *ATNConfigSet) []*BitSet {
configToAlts := NewJMap[*ATNConfig, *BitSet, *ATNAltConfigComparator[*ATNConfig]](atnAltCfgEqInst, AltSetCollection, "PredictionModegetConflictingAltSubsets()")
for _, c := range configs.configs {
alts, ok := configToAlts.Get(c)
if !ok {
alts = NewBitSet()
configToAlts.Put(c, alts)
}
alts.add(c.GetAlt())
}
return configToAlts.Values()
}
// PredictionModeGetStateToAltMap gets a map from state to alt subset from a configuration set.
//
// for each configuration c in configs:
// map[c.ATNConfig.state] U= c.ATNConfig.alt}
func PredictionModeGetStateToAltMap(configs *ATNConfigSet) *AltDict {
m := NewAltDict()
for _, c := range configs.configs {
alts := m.Get(c.GetState().String())
if alts == nil {
alts = NewBitSet()
m.put(c.GetState().String(), alts)
}
alts.(*BitSet).add(c.GetAlt())
}
return m
}
func PredictionModehasStateAssociatedWithOneAlt(configs *ATNConfigSet) bool {
values := PredictionModeGetStateToAltMap(configs).values()
for i := 0; i < len(values); i++ {
if values[i].(*BitSet).length() == 1 {
return true
}
}
return false
}
// PredictionModegetSingleViableAlt gets the single alternative predicted by all alternative subsets in altsets
// if there is one.
//
// TODO: JI - Review this code - it does not seem to do the same thing as the Java code - maybe because [BitSet] is not like the Java utils BitSet
func PredictionModegetSingleViableAlt(altsets []*BitSet) int {
result := ATNInvalidAltNumber
for i := 0; i < len(altsets); i++ {
alts := altsets[i]
minAlt := alts.minValue()
if result == ATNInvalidAltNumber {
result = minAlt
} else if result != minAlt { // more than 1 viable alt
return ATNInvalidAltNumber
}
}
return result
}