mirror of
https://github.com/ceph/ceph-csi.git
synced 2024-12-24 14:00:19 +00:00
d02e50aa9b
Existing config maps are now replaced with rados omaps that help store information regarding the requested volume names and the rbd image names backing the same. Further to detect cluster, pool and which image a volume ID refers to, changes to volume ID encoding has been done as per provided design specification in the stateless ceph-csi proposal. Additional changes and updates, - Updated documentation - Updated manifests - Updated Helm chart - Addressed a few csi-test failures Signed-off-by: ShyamsundarR <srangana@redhat.com>
252 lines
7.5 KiB
Markdown
252 lines
7.5 KiB
Markdown
# How to test RBD and CephFS plugins with Kubernetes 1.13
|
|
|
|
## Deploying Ceph-CSI services
|
|
|
|
Both `rbd` and `cephfs` directories contain `plugin-deploy.sh` and
|
|
`plugin-teardown.sh` helper scripts. You can use those to help you
|
|
deploy/teardown RBACs, sidecar containers and the plugin in one go.
|
|
By default, they look for the YAML manifests in
|
|
`../../deploy/{rbd,cephfs}/kubernetes`.
|
|
You can override this path by running `$ ./plugin-deploy.sh /path/to/my/manifests`.
|
|
|
|
## Creating CSI configuration for RBD based provisioning
|
|
|
|
**NOTE:** This section is not required for cephfs based provisioning, and SHOULD
|
|
be skipped.
|
|
|
|
For RBD based provisioning, the CSI plugin requires configuration information
|
|
regarding the Ceph cluster(s), that would host the RBD based block devices. This
|
|
is provided by adding a per-cluster identifier (referred to as clusterID), and
|
|
the required monitor details for the same, as in the provided [sample config
|
|
map](./rbd/csi-config-map-sample.yaml).
|
|
|
|
Gather the following information from the Ceph cluster(s) of choice,
|
|
|
|
* Ceph monitor list
|
|
* Typically in the output of `ceph mon dump`
|
|
* Used to prepare a list of `monitors` in the CSI configuration file
|
|
* Ceph Cluster fsid
|
|
* If choosing to use the Ceph cluster fsid as the unique value of clusterID,
|
|
* Output of `ceph fsid`
|
|
* Alternatively, choose a `<cluster-id>` value that is distinct per Ceph
|
|
cluster in use by this kubernetes cluster
|
|
|
|
Update the [sample config map](./rbd/csi-config-map-sample.yaml) with values
|
|
from a Ceph cluster and replace `<cluster-id>` with the chosen clusterID, to
|
|
create the manifest for the config map which can be updated in the cluster
|
|
using the following command,
|
|
|
|
* `kubectl replace -f rbd/csi-config-map-sample.yaml`
|
|
|
|
Storage class and snapshot class, using `<cluster-id>` as the value for the
|
|
option `clusterID`, can now be created on the cluster.
|
|
|
|
## Deploying the storage class
|
|
|
|
Once the plugin is successfully deployed, you'll need to customize
|
|
`storageclass.yaml` and `secret.yaml` manifests to reflect your Ceph cluster
|
|
setup.
|
|
Please consult the documentation for info about available parameters.
|
|
|
|
After configuring the secrets, monitors, etc. you can deploy a
|
|
testing Pod mounting a RBD image / CephFS volume:
|
|
|
|
```bash
|
|
kubectl create -f secret.yaml
|
|
kubectl create -f storageclass.yaml
|
|
kubectl create -f pvc.yaml
|
|
kubectl create -f pod.yaml
|
|
```
|
|
|
|
Other helper scripts:
|
|
|
|
* `logs.sh` output of the plugin
|
|
* `exec-bash.sh` logs into the plugin's container and runs bash
|
|
|
|
### How to test RBD Snapshot feature
|
|
|
|
Before continuing, make sure you enabled the required
|
|
feature gate `VolumeSnapshotDataSource=true` in your Kubernetes cluster.
|
|
|
|
In the `examples/rbd` directory you will find two files related to snapshots:
|
|
[snapshotclass.yaml](./rbd/snapshotclass.yaml) and
|
|
[snapshot.yaml](./rbd/snapshot.yaml).
|
|
|
|
Once you created your RBD volume, you'll need to customize at least
|
|
`snapshotclass.yaml` and make sure the `clusterid` and `pool` parameters match
|
|
your Ceph cluster setup.
|
|
If you followed the documentation to create the rbdplugin, you shouldn't
|
|
have to edit any other file.
|
|
|
|
After configuring everything you needed, deploy the snapshot class:
|
|
|
|
```bash
|
|
kubectl create -f snapshotclass.yaml
|
|
```
|
|
|
|
Verify that the snapshot class was created:
|
|
|
|
```console
|
|
$ kubectl get volumesnapshotclass
|
|
NAME AGE
|
|
csi-rbdplugin-snapclass 4s
|
|
```
|
|
|
|
Create a snapshot from the existing PVC:
|
|
|
|
```bash
|
|
kubectl create -f snapshot.yaml
|
|
```
|
|
|
|
To verify if your volume snapshot has successfully been created, run the following:
|
|
|
|
```console
|
|
$ kubectl get volumesnapshot
|
|
NAME AGE
|
|
rbd-pvc-snapshot 6s
|
|
```
|
|
|
|
To check the status of the snapshot, run the following:
|
|
|
|
```bash
|
|
$ kubectl describe volumesnapshot rbd-pvc-snapshot
|
|
|
|
Name: rbd-pvc-snapshot
|
|
Namespace: default
|
|
Labels: <none>
|
|
Annotations: <none>
|
|
API Version: snapshot.storage.k8s.io/v1alpha1
|
|
Kind: VolumeSnapshot
|
|
Metadata:
|
|
Creation Timestamp: 2019-02-06T08:52:34Z
|
|
Finalizers:
|
|
snapshot.storage.kubernetes.io/volumesnapshot-protection
|
|
Generation: 5
|
|
Resource Version: 84239
|
|
Self Link: /apis/snapshot.storage.k8s.io/v1alpha1/namespaces/default/volumesnapshots/rbd-pvc-snapshot
|
|
UID: 8b9b5740-29ec-11e9-8e0f-b8ca3aad030b
|
|
Spec:
|
|
Snapshot Class Name: csi-rbdplugin-snapclass
|
|
Snapshot Content Name: snapcontent-8b9b5740-29ec-11e9-8e0f-b8ca3aad030b
|
|
Source:
|
|
API Group: <nil>
|
|
Kind: PersistentVolumeClaim
|
|
Name: rbd-pvc
|
|
Status:
|
|
Creation Time: 2019-02-06T08:52:34Z
|
|
Ready To Use: true
|
|
Restore Size: 1Gi
|
|
Events: <none>
|
|
```
|
|
|
|
To be sure everything is OK you can run `rbd snap ls [your-pvc-name]` inside
|
|
one of your Ceph pod.
|
|
|
|
To restore the snapshot to a new PVC, deploy
|
|
[pvc-restore.yaml](./rbd/pvc-restore.yaml) and a testing pod
|
|
[pod-restore.yaml](./rbd/pod-restore.yaml):
|
|
|
|
```bash
|
|
kubectl create -f pvc-restore.yaml
|
|
kubectl create -f pod-restore.yaml
|
|
```
|
|
|
|
### How to test RBD MULTI_NODE_MULTI_WRITER BLOCK feature
|
|
|
|
Requires feature-gates: `BlockVolume=true` `CSIBlockVolume=true`
|
|
|
|
*NOTE* The MULTI_NODE_MULTI_WRITER capability is only available for
|
|
Volumes that are of access_type `block`
|
|
|
|
*WARNING* This feature is strictly for workloads that know how to deal
|
|
with concurrent access to the Volume (eg Active/Passive applications).
|
|
Using RWX modes on non clustered file systems with applications trying
|
|
to simultaneously access the Volume will likely result in data corruption!
|
|
|
|
Following are examples for issuing a request for a `Block`
|
|
`ReadWriteMany` Claim, and using the resultant Claim for a POD
|
|
|
|
```yaml
|
|
apiVersion: v1
|
|
kind: PersistentVolumeClaim
|
|
metadata:
|
|
name: block-pvc
|
|
spec:
|
|
accessModes:
|
|
- ReadWriteMany
|
|
volumeMode: Block
|
|
resources:
|
|
requests:
|
|
storage: 1Gi
|
|
storageClassName: csi-rbd-sc
|
|
```
|
|
|
|
Create a POD that uses this PVC:
|
|
|
|
```yaml
|
|
apiVersion: v1
|
|
kind: Pod
|
|
metadata:
|
|
name: my-pod
|
|
spec:
|
|
containers:
|
|
- name: my-container
|
|
image: debian
|
|
command: ["/bin/bash", "-c"]
|
|
args: [ "tail -f /dev/null" ]
|
|
volumeDevices:
|
|
- devicePath: /dev/rbdblock
|
|
name: my-volume
|
|
imagePullPolicy: IfNotPresent
|
|
volumes:
|
|
- name: my-volume
|
|
persistentVolumeClaim:
|
|
claimName: block-pvc
|
|
|
|
```
|
|
|
|
Now, we can create a second POD (ensure the POD is scheduled on a different
|
|
node; multiwriter single node works without this feature) that also uses this
|
|
PVC at the same time, again wait for the pod to enter running state, and verify
|
|
the block device is available.
|
|
|
|
```yaml
|
|
apiVersion: v1
|
|
kind: Pod
|
|
metadata:
|
|
name: another-pod
|
|
spec:
|
|
containers:
|
|
- name: my-container
|
|
image: debian
|
|
command: ["/bin/bash", "-c"]
|
|
args: [ "tail -f /dev/null" ]
|
|
volumeDevices:
|
|
- devicePath: /dev/rbdblock
|
|
name: my-volume
|
|
imagePullPolicy: IfNotPresent
|
|
volumes:
|
|
- name: my-volume
|
|
persistentVolumeClaim:
|
|
claimName: block-pvc
|
|
```
|
|
|
|
Wait for the PODs to enter Running state, check that our block device
|
|
is available in the container at `/dev/rdbblock` in both containers:
|
|
|
|
```bash
|
|
$ kubectl exec -it my-pod -- fdisk -l /dev/rbdblock
|
|
Disk /dev/rbdblock: 1 GiB, 1073741824 bytes, 2097152 sectors
|
|
Units: sectors of 1 * 512 = 512 bytes
|
|
Sector size (logical/physical): 512 bytes / 512 bytes
|
|
I/O size (minimum/optimal): 4194304 bytes / 4194304 bytes
|
|
```
|
|
|
|
```bash
|
|
$ kubectl exec -it another-pod -- fdisk -l /dev/rbdblock
|
|
Disk /dev/rbdblock: 1 GiB, 1073741824 bytes, 2097152 sectors
|
|
Units: sectors of 1 * 512 = 512 bytes
|
|
Sector size (logical/physical): 512 bytes / 512 bytes
|
|
I/O size (minimum/optimal): 4194304 bytes / 4194304 bytes
|
|
```
|