ceph-csi/vendor/github.com/google/cel-go/parser/parser.go
Madhu Rajanna 5a66991bb3 rebase: update kubernetes to latest
updating the kubernetes release to the
latest in main go.mod

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
2024-08-20 08:17:01 +00:00

1009 lines
30 KiB
Go

// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package parser declares an expression parser with support for macro
// expansion.
package parser
import (
"fmt"
"regexp"
"strconv"
"strings"
antlr "github.com/antlr4-go/antlr/v4"
"github.com/google/cel-go/common"
"github.com/google/cel-go/common/ast"
"github.com/google/cel-go/common/operators"
"github.com/google/cel-go/common/runes"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/parser/gen"
)
// Parser encapsulates the context necessary to perform parsing for different expressions.
type Parser struct {
options
}
// NewParser builds and returns a new Parser using the provided options.
func NewParser(opts ...Option) (*Parser, error) {
p := &Parser{}
for _, opt := range opts {
if err := opt(&p.options); err != nil {
return nil, err
}
}
if p.errorReportingLimit == 0 {
p.errorReportingLimit = 100
}
if p.maxRecursionDepth == 0 {
p.maxRecursionDepth = 250
}
if p.maxRecursionDepth == -1 {
p.maxRecursionDepth = int((^uint(0)) >> 1)
}
if p.errorRecoveryTokenLookaheadLimit == 0 {
p.errorRecoveryTokenLookaheadLimit = 256
}
if p.errorRecoveryLimit == 0 {
p.errorRecoveryLimit = 30
}
if p.errorRecoveryLimit == -1 {
p.errorRecoveryLimit = int((^uint(0)) >> 1)
}
if p.expressionSizeCodePointLimit == 0 {
p.expressionSizeCodePointLimit = 100_000
}
if p.expressionSizeCodePointLimit == -1 {
p.expressionSizeCodePointLimit = int((^uint(0)) >> 1)
}
// Bool is false by default, so populateMacroCalls will be false by default
return p, nil
}
// mustNewParser does the work of NewParser and panics if an error occurs.
//
// This function is only intended for internal use and is for backwards compatibility in Parse and
// ParseWithMacros, where we know the options will result in an error.
func mustNewParser(opts ...Option) *Parser {
p, err := NewParser(opts...)
if err != nil {
panic(err)
}
return p
}
// Parse parses the expression represented by source and returns the result.
func (p *Parser) Parse(source common.Source) (*ast.AST, *common.Errors) {
errs := common.NewErrors(source)
fac := ast.NewExprFactory()
impl := parser{
errors: &parseErrors{errs},
exprFactory: fac,
helper: newParserHelper(source, fac),
macros: p.macros,
maxRecursionDepth: p.maxRecursionDepth,
errorReportingLimit: p.errorReportingLimit,
errorRecoveryLimit: p.errorRecoveryLimit,
errorRecoveryLookaheadTokenLimit: p.errorRecoveryTokenLookaheadLimit,
populateMacroCalls: p.populateMacroCalls,
enableOptionalSyntax: p.enableOptionalSyntax,
enableVariadicOperatorASTs: p.enableVariadicOperatorASTs,
}
buf, ok := source.(runes.Buffer)
if !ok {
buf = runes.NewBuffer(source.Content())
}
var out ast.Expr
if buf.Len() > p.expressionSizeCodePointLimit {
out = impl.reportError(common.NoLocation,
"expression code point size exceeds limit: size: %d, limit %d",
buf.Len(), p.expressionSizeCodePointLimit)
} else {
out = impl.parse(buf, source.Description())
}
return ast.NewAST(out, impl.helper.getSourceInfo()), errs
}
// reservedIds are not legal to use as variables. We exclude them post-parse, as they *are* valid
// field names for protos, and it would complicate the grammar to distinguish the cases.
var reservedIds = map[string]struct{}{
"as": {},
"break": {},
"const": {},
"continue": {},
"else": {},
"false": {},
"for": {},
"function": {},
"if": {},
"import": {},
"in": {},
"let": {},
"loop": {},
"package": {},
"namespace": {},
"null": {},
"return": {},
"true": {},
"var": {},
"void": {},
"while": {},
}
// Parse converts a source input a parsed expression.
// This function calls ParseWithMacros with AllMacros.
//
// Deprecated: Use NewParser().Parse() instead.
func Parse(source common.Source) (*ast.AST, *common.Errors) {
return mustNewParser(Macros(AllMacros...)).Parse(source)
}
type recursionError struct {
message string
}
// Error implements error.
func (re *recursionError) Error() string {
return re.message
}
var _ error = &recursionError{}
type recursionListener struct {
maxDepth int
ruleTypeDepth map[int]*int
}
func (rl *recursionListener) VisitTerminal(node antlr.TerminalNode) {}
func (rl *recursionListener) VisitErrorNode(node antlr.ErrorNode) {}
func (rl *recursionListener) EnterEveryRule(ctx antlr.ParserRuleContext) {
if ctx == nil {
return
}
ruleIndex := ctx.GetRuleIndex()
depth, found := rl.ruleTypeDepth[ruleIndex]
if !found {
var counter = 1
rl.ruleTypeDepth[ruleIndex] = &counter
depth = &counter
} else {
*depth++
}
if *depth > rl.maxDepth {
panic(&recursionError{
message: fmt.Sprintf("expression recursion limit exceeded: %d", rl.maxDepth),
})
}
}
func (rl *recursionListener) ExitEveryRule(ctx antlr.ParserRuleContext) {
if ctx == nil {
return
}
ruleIndex := ctx.GetRuleIndex()
if depth, found := rl.ruleTypeDepth[ruleIndex]; found && *depth > 0 {
*depth--
}
}
var _ antlr.ParseTreeListener = &recursionListener{}
type tooManyErrors struct {
errorReportingLimit int
}
func (t *tooManyErrors) Error() string {
return fmt.Sprintf("More than %d syntax errors", t.errorReportingLimit)
}
var _ error = &tooManyErrors{}
type recoveryLimitError struct {
message string
}
// Error implements error.
func (rl *recoveryLimitError) Error() string {
return rl.message
}
type lookaheadLimitError struct {
message string
}
func (ll *lookaheadLimitError) Error() string {
return ll.message
}
var _ error = &recoveryLimitError{}
type recoveryLimitErrorStrategy struct {
*antlr.DefaultErrorStrategy
errorRecoveryLimit int
errorRecoveryTokenLookaheadLimit int
recoveryAttempts int
}
type lookaheadConsumer struct {
antlr.Parser
errorRecoveryTokenLookaheadLimit int
lookaheadAttempts int
}
func (lc *lookaheadConsumer) Consume() antlr.Token {
if lc.lookaheadAttempts >= lc.errorRecoveryTokenLookaheadLimit {
panic(&lookaheadLimitError{
message: fmt.Sprintf("error recovery token lookahead limit exceeded: %d", lc.errorRecoveryTokenLookaheadLimit),
})
}
lc.lookaheadAttempts++
return lc.Parser.Consume()
}
func (rl *recoveryLimitErrorStrategy) Recover(recognizer antlr.Parser, e antlr.RecognitionException) {
rl.checkAttempts(recognizer)
lc := &lookaheadConsumer{Parser: recognizer, errorRecoveryTokenLookaheadLimit: rl.errorRecoveryTokenLookaheadLimit}
rl.DefaultErrorStrategy.Recover(lc, e)
}
func (rl *recoveryLimitErrorStrategy) RecoverInline(recognizer antlr.Parser) antlr.Token {
rl.checkAttempts(recognizer)
lc := &lookaheadConsumer{Parser: recognizer, errorRecoveryTokenLookaheadLimit: rl.errorRecoveryTokenLookaheadLimit}
return rl.DefaultErrorStrategy.RecoverInline(lc)
}
func (rl *recoveryLimitErrorStrategy) checkAttempts(recognizer antlr.Parser) {
if rl.recoveryAttempts == rl.errorRecoveryLimit {
rl.recoveryAttempts++
msg := fmt.Sprintf("error recovery attempt limit exceeded: %d", rl.errorRecoveryLimit)
recognizer.NotifyErrorListeners(msg, nil, nil)
panic(&recoveryLimitError{
message: msg,
})
}
rl.recoveryAttempts++
}
var _ antlr.ErrorStrategy = &recoveryLimitErrorStrategy{}
type parser struct {
gen.BaseCELVisitor
errors *parseErrors
exprFactory ast.ExprFactory
helper *parserHelper
macros map[string]Macro
recursionDepth int
errorReports int
maxRecursionDepth int
errorReportingLimit int
errorRecoveryLimit int
errorRecoveryLookaheadTokenLimit int
populateMacroCalls bool
enableOptionalSyntax bool
enableVariadicOperatorASTs bool
}
var _ gen.CELVisitor = (*parser)(nil)
func (p *parser) parse(expr runes.Buffer, desc string) ast.Expr {
lexer := gen.NewCELLexer(newCharStream(expr, desc))
lexer.RemoveErrorListeners()
lexer.AddErrorListener(p)
prsr := gen.NewCELParser(antlr.NewCommonTokenStream(lexer, 0))
prsr.RemoveErrorListeners()
prsrListener := &recursionListener{
maxDepth: p.maxRecursionDepth,
ruleTypeDepth: map[int]*int{},
}
prsr.AddErrorListener(p)
prsr.AddParseListener(prsrListener)
prsr.SetErrorHandler(&recoveryLimitErrorStrategy{
DefaultErrorStrategy: antlr.NewDefaultErrorStrategy(),
errorRecoveryLimit: p.errorRecoveryLimit,
errorRecoveryTokenLookaheadLimit: p.errorRecoveryLookaheadTokenLimit,
})
defer func() {
if val := recover(); val != nil {
switch err := val.(type) {
case *lookaheadLimitError:
p.errors.internalError(err.Error())
case *recursionError:
p.errors.internalError(err.Error())
case *tooManyErrors:
// do nothing
case *recoveryLimitError:
// do nothing, listeners already notified and error reported.
default:
panic(val)
}
}
}()
return p.Visit(prsr.Start_()).(ast.Expr)
}
// Visitor implementations.
func (p *parser) Visit(tree antlr.ParseTree) any {
t := unnest(tree)
switch tree := t.(type) {
case *gen.StartContext:
return p.VisitStart(tree)
case *gen.ExprContext:
p.checkAndIncrementRecursionDepth()
out := p.VisitExpr(tree)
p.decrementRecursionDepth()
return out
case *gen.ConditionalAndContext:
return p.VisitConditionalAnd(tree)
case *gen.ConditionalOrContext:
return p.VisitConditionalOr(tree)
case *gen.RelationContext:
p.checkAndIncrementRecursionDepth()
out := p.VisitRelation(tree)
p.decrementRecursionDepth()
return out
case *gen.CalcContext:
p.checkAndIncrementRecursionDepth()
out := p.VisitCalc(tree)
p.decrementRecursionDepth()
return out
case *gen.LogicalNotContext:
return p.VisitLogicalNot(tree)
case *gen.IdentOrGlobalCallContext:
return p.VisitIdentOrGlobalCall(tree)
case *gen.SelectContext:
p.checkAndIncrementRecursionDepth()
out := p.VisitSelect(tree)
p.decrementRecursionDepth()
return out
case *gen.MemberCallContext:
p.checkAndIncrementRecursionDepth()
out := p.VisitMemberCall(tree)
p.decrementRecursionDepth()
return out
case *gen.MapInitializerListContext:
return p.VisitMapInitializerList(tree)
case *gen.NegateContext:
return p.VisitNegate(tree)
case *gen.IndexContext:
p.checkAndIncrementRecursionDepth()
out := p.VisitIndex(tree)
p.decrementRecursionDepth()
return out
case *gen.UnaryContext:
return p.VisitUnary(tree)
case *gen.CreateListContext:
return p.VisitCreateList(tree)
case *gen.CreateMessageContext:
return p.VisitCreateMessage(tree)
case *gen.CreateStructContext:
return p.VisitCreateStruct(tree)
case *gen.IntContext:
return p.VisitInt(tree)
case *gen.UintContext:
return p.VisitUint(tree)
case *gen.DoubleContext:
return p.VisitDouble(tree)
case *gen.StringContext:
return p.VisitString(tree)
case *gen.BytesContext:
return p.VisitBytes(tree)
case *gen.BoolFalseContext:
return p.VisitBoolFalse(tree)
case *gen.BoolTrueContext:
return p.VisitBoolTrue(tree)
case *gen.NullContext:
return p.VisitNull(tree)
}
// Report at least one error if the parser reaches an unknown parse element.
// Typically, this happens if the parser has already encountered a syntax error elsewhere.
if p.errors.errorCount() == 0 {
txt := "<<nil>>"
if t != nil {
txt = fmt.Sprintf("<<%T>>", t)
}
return p.reportError(common.NoLocation, "unknown parse element encountered: %s", txt)
}
return p.helper.newExpr(common.NoLocation)
}
// Visit a parse tree produced by CELParser#start.
func (p *parser) VisitStart(ctx *gen.StartContext) any {
return p.Visit(ctx.Expr())
}
// Visit a parse tree produced by CELParser#expr.
func (p *parser) VisitExpr(ctx *gen.ExprContext) any {
result := p.Visit(ctx.GetE()).(ast.Expr)
if ctx.GetOp() == nil {
return result
}
opID := p.helper.id(ctx.GetOp())
ifTrue := p.Visit(ctx.GetE1()).(ast.Expr)
ifFalse := p.Visit(ctx.GetE2()).(ast.Expr)
return p.globalCallOrMacro(opID, operators.Conditional, result, ifTrue, ifFalse)
}
// Visit a parse tree produced by CELParser#conditionalOr.
func (p *parser) VisitConditionalOr(ctx *gen.ConditionalOrContext) any {
result := p.Visit(ctx.GetE()).(ast.Expr)
l := p.newLogicManager(operators.LogicalOr, result)
rest := ctx.GetE1()
for i, op := range ctx.GetOps() {
if i >= len(rest) {
return p.reportError(ctx, "unexpected character, wanted '||'")
}
next := p.Visit(rest[i]).(ast.Expr)
opID := p.helper.id(op)
l.addTerm(opID, next)
}
return l.toExpr()
}
// Visit a parse tree produced by CELParser#conditionalAnd.
func (p *parser) VisitConditionalAnd(ctx *gen.ConditionalAndContext) any {
result := p.Visit(ctx.GetE()).(ast.Expr)
l := p.newLogicManager(operators.LogicalAnd, result)
rest := ctx.GetE1()
for i, op := range ctx.GetOps() {
if i >= len(rest) {
return p.reportError(ctx, "unexpected character, wanted '&&'")
}
next := p.Visit(rest[i]).(ast.Expr)
opID := p.helper.id(op)
l.addTerm(opID, next)
}
return l.toExpr()
}
// Visit a parse tree produced by CELParser#relation.
func (p *parser) VisitRelation(ctx *gen.RelationContext) any {
opText := ""
if ctx.GetOp() != nil {
opText = ctx.GetOp().GetText()
}
if op, found := operators.Find(opText); found {
lhs := p.Visit(ctx.Relation(0)).(ast.Expr)
opID := p.helper.id(ctx.GetOp())
rhs := p.Visit(ctx.Relation(1)).(ast.Expr)
return p.globalCallOrMacro(opID, op, lhs, rhs)
}
return p.reportError(ctx, "operator not found")
}
// Visit a parse tree produced by CELParser#calc.
func (p *parser) VisitCalc(ctx *gen.CalcContext) any {
opText := ""
if ctx.GetOp() != nil {
opText = ctx.GetOp().GetText()
}
if op, found := operators.Find(opText); found {
lhs := p.Visit(ctx.Calc(0)).(ast.Expr)
opID := p.helper.id(ctx.GetOp())
rhs := p.Visit(ctx.Calc(1)).(ast.Expr)
return p.globalCallOrMacro(opID, op, lhs, rhs)
}
return p.reportError(ctx, "operator not found")
}
func (p *parser) VisitUnary(ctx *gen.UnaryContext) any {
return p.helper.newLiteralString(ctx, "<<error>>")
}
// Visit a parse tree produced by CELParser#LogicalNot.
func (p *parser) VisitLogicalNot(ctx *gen.LogicalNotContext) any {
if len(ctx.GetOps())%2 == 0 {
return p.Visit(ctx.Member())
}
opID := p.helper.id(ctx.GetOps()[0])
target := p.Visit(ctx.Member()).(ast.Expr)
return p.globalCallOrMacro(opID, operators.LogicalNot, target)
}
func (p *parser) VisitNegate(ctx *gen.NegateContext) any {
if len(ctx.GetOps())%2 == 0 {
return p.Visit(ctx.Member())
}
opID := p.helper.id(ctx.GetOps()[0])
target := p.Visit(ctx.Member()).(ast.Expr)
return p.globalCallOrMacro(opID, operators.Negate, target)
}
// VisitSelect visits a parse tree produced by CELParser#Select.
func (p *parser) VisitSelect(ctx *gen.SelectContext) any {
operand := p.Visit(ctx.Member()).(ast.Expr)
// Handle the error case where no valid identifier is specified.
if ctx.GetId() == nil || ctx.GetOp() == nil {
return p.helper.newExpr(ctx)
}
id := ctx.GetId().GetText()
if ctx.GetOpt() != nil {
if !p.enableOptionalSyntax {
return p.reportError(ctx.GetOp(), "unsupported syntax '.?'")
}
return p.helper.newGlobalCall(
ctx.GetOp(),
operators.OptSelect,
operand,
p.helper.newLiteralString(ctx.GetId(), id))
}
return p.helper.newSelect(ctx.GetOp(), operand, id)
}
// VisitMemberCall visits a parse tree produced by CELParser#MemberCall.
func (p *parser) VisitMemberCall(ctx *gen.MemberCallContext) any {
operand := p.Visit(ctx.Member()).(ast.Expr)
// Handle the error case where no valid identifier is specified.
if ctx.GetId() == nil {
return p.helper.newExpr(ctx)
}
id := ctx.GetId().GetText()
opID := p.helper.id(ctx.GetOpen())
return p.receiverCallOrMacro(opID, id, operand, p.visitExprList(ctx.GetArgs())...)
}
// Visit a parse tree produced by CELParser#Index.
func (p *parser) VisitIndex(ctx *gen.IndexContext) any {
target := p.Visit(ctx.Member()).(ast.Expr)
// Handle the error case where no valid identifier is specified.
if ctx.GetOp() == nil {
return p.helper.newExpr(ctx)
}
opID := p.helper.id(ctx.GetOp())
index := p.Visit(ctx.GetIndex()).(ast.Expr)
operator := operators.Index
if ctx.GetOpt() != nil {
if !p.enableOptionalSyntax {
return p.reportError(ctx.GetOp(), "unsupported syntax '[?'")
}
operator = operators.OptIndex
}
return p.globalCallOrMacro(opID, operator, target, index)
}
// Visit a parse tree produced by CELParser#CreateMessage.
func (p *parser) VisitCreateMessage(ctx *gen.CreateMessageContext) any {
messageName := ""
for _, id := range ctx.GetIds() {
if len(messageName) != 0 {
messageName += "."
}
messageName += id.GetText()
}
if ctx.GetLeadingDot() != nil {
messageName = "." + messageName
}
objID := p.helper.id(ctx.GetOp())
entries := p.VisitIFieldInitializerList(ctx.GetEntries()).([]ast.EntryExpr)
return p.helper.newObject(objID, messageName, entries...)
}
// Visit a parse tree of field initializers.
func (p *parser) VisitIFieldInitializerList(ctx gen.IFieldInitializerListContext) any {
if ctx == nil || ctx.GetFields() == nil {
// This is the result of a syntax error handled elswhere, return empty.
return []ast.EntryExpr{}
}
result := make([]ast.EntryExpr, len(ctx.GetFields()))
cols := ctx.GetCols()
vals := ctx.GetValues()
for i, f := range ctx.GetFields() {
if i >= len(cols) || i >= len(vals) {
// This is the result of a syntax error detected elsewhere.
return []ast.EntryExpr{}
}
initID := p.helper.id(cols[i])
optField := f.(*gen.OptFieldContext)
optional := optField.GetOpt() != nil
if !p.enableOptionalSyntax && optional {
p.reportError(optField, "unsupported syntax '?'")
continue
}
// The field may be empty due to a prior error.
id := optField.IDENTIFIER()
if id == nil {
return []ast.EntryExpr{}
}
fieldName := id.GetText()
value := p.Visit(vals[i]).(ast.Expr)
field := p.helper.newObjectField(initID, fieldName, value, optional)
result[i] = field
}
return result
}
// Visit a parse tree produced by CELParser#IdentOrGlobalCall.
func (p *parser) VisitIdentOrGlobalCall(ctx *gen.IdentOrGlobalCallContext) any {
identName := ""
if ctx.GetLeadingDot() != nil {
identName = "."
}
// Handle the error case where no valid identifier is specified.
if ctx.GetId() == nil {
return p.helper.newExpr(ctx)
}
// Handle reserved identifiers.
id := ctx.GetId().GetText()
if _, ok := reservedIds[id]; ok {
return p.reportError(ctx, "reserved identifier: %s", id)
}
identName += id
if ctx.GetOp() != nil {
opID := p.helper.id(ctx.GetOp())
return p.globalCallOrMacro(opID, identName, p.visitExprList(ctx.GetArgs())...)
}
return p.helper.newIdent(ctx.GetId(), identName)
}
// Visit a parse tree produced by CELParser#CreateList.
func (p *parser) VisitCreateList(ctx *gen.CreateListContext) any {
listID := p.helper.id(ctx.GetOp())
elems, optionals := p.visitListInit(ctx.GetElems())
return p.helper.newList(listID, elems, optionals...)
}
// Visit a parse tree produced by CELParser#CreateStruct.
func (p *parser) VisitCreateStruct(ctx *gen.CreateStructContext) any {
structID := p.helper.id(ctx.GetOp())
entries := []ast.EntryExpr{}
if ctx.GetEntries() != nil {
entries = p.Visit(ctx.GetEntries()).([]ast.EntryExpr)
}
return p.helper.newMap(structID, entries...)
}
// Visit a parse tree produced by CELParser#mapInitializerList.
func (p *parser) VisitMapInitializerList(ctx *gen.MapInitializerListContext) any {
if ctx == nil || ctx.GetKeys() == nil {
// This is the result of a syntax error handled elswhere, return empty.
return []ast.EntryExpr{}
}
result := make([]ast.EntryExpr, len(ctx.GetCols()))
keys := ctx.GetKeys()
vals := ctx.GetValues()
for i, col := range ctx.GetCols() {
colID := p.helper.id(col)
if i >= len(keys) || i >= len(vals) {
// This is the result of a syntax error detected elsewhere.
return []ast.EntryExpr{}
}
optKey := keys[i]
optional := optKey.GetOpt() != nil
if !p.enableOptionalSyntax && optional {
p.reportError(optKey, "unsupported syntax '?'")
continue
}
key := p.Visit(optKey.GetE()).(ast.Expr)
value := p.Visit(vals[i]).(ast.Expr)
entry := p.helper.newMapEntry(colID, key, value, optional)
result[i] = entry
}
return result
}
// Visit a parse tree produced by CELParser#Int.
func (p *parser) VisitInt(ctx *gen.IntContext) any {
text := ctx.GetTok().GetText()
base := 10
if strings.HasPrefix(text, "0x") {
base = 16
text = text[2:]
}
if ctx.GetSign() != nil {
text = ctx.GetSign().GetText() + text
}
i, err := strconv.ParseInt(text, base, 64)
if err != nil {
return p.reportError(ctx, "invalid int literal")
}
return p.helper.newLiteralInt(ctx, i)
}
// Visit a parse tree produced by CELParser#Uint.
func (p *parser) VisitUint(ctx *gen.UintContext) any {
text := ctx.GetTok().GetText()
// trim the 'u' designator included in the uint literal.
text = text[:len(text)-1]
base := 10
if strings.HasPrefix(text, "0x") {
base = 16
text = text[2:]
}
i, err := strconv.ParseUint(text, base, 64)
if err != nil {
return p.reportError(ctx, "invalid uint literal")
}
return p.helper.newLiteralUint(ctx, i)
}
// Visit a parse tree produced by CELParser#Double.
func (p *parser) VisitDouble(ctx *gen.DoubleContext) any {
txt := ctx.GetTok().GetText()
if ctx.GetSign() != nil {
txt = ctx.GetSign().GetText() + txt
}
f, err := strconv.ParseFloat(txt, 64)
if err != nil {
return p.reportError(ctx, "invalid double literal")
}
return p.helper.newLiteralDouble(ctx, f)
}
// Visit a parse tree produced by CELParser#String.
func (p *parser) VisitString(ctx *gen.StringContext) any {
s := p.unquote(ctx, ctx.GetText(), false)
return p.helper.newLiteralString(ctx, s)
}
// Visit a parse tree produced by CELParser#Bytes.
func (p *parser) VisitBytes(ctx *gen.BytesContext) any {
b := []byte(p.unquote(ctx, ctx.GetTok().GetText()[1:], true))
return p.helper.newLiteralBytes(ctx, b)
}
// Visit a parse tree produced by CELParser#BoolTrue.
func (p *parser) VisitBoolTrue(ctx *gen.BoolTrueContext) any {
return p.helper.newLiteralBool(ctx, true)
}
// Visit a parse tree produced by CELParser#BoolFalse.
func (p *parser) VisitBoolFalse(ctx *gen.BoolFalseContext) any {
return p.helper.newLiteralBool(ctx, false)
}
// Visit a parse tree produced by CELParser#Null.
func (p *parser) VisitNull(ctx *gen.NullContext) any {
return p.helper.exprFactory.NewLiteral(p.helper.newID(ctx), types.NullValue)
}
func (p *parser) visitExprList(ctx gen.IExprListContext) []ast.Expr {
if ctx == nil {
return []ast.Expr{}
}
return p.visitSlice(ctx.GetE())
}
func (p *parser) visitListInit(ctx gen.IListInitContext) ([]ast.Expr, []int32) {
if ctx == nil {
return []ast.Expr{}, []int32{}
}
elements := ctx.GetElems()
result := make([]ast.Expr, len(elements))
optionals := []int32{}
for i, e := range elements {
ex := p.Visit(e.GetE()).(ast.Expr)
if ex == nil {
return []ast.Expr{}, []int32{}
}
result[i] = ex
if e.GetOpt() != nil {
if !p.enableOptionalSyntax {
p.reportError(e.GetOpt(), "unsupported syntax '?'")
continue
}
optionals = append(optionals, int32(i))
}
}
return result, optionals
}
func (p *parser) visitSlice(expressions []gen.IExprContext) []ast.Expr {
if expressions == nil {
return []ast.Expr{}
}
result := make([]ast.Expr, len(expressions))
for i, e := range expressions {
ex := p.Visit(e).(ast.Expr)
result[i] = ex
}
return result
}
func (p *parser) unquote(ctx any, value string, isBytes bool) string {
text, err := unescape(value, isBytes)
if err != nil {
p.reportError(ctx, "%s", err.Error())
return value
}
return text
}
func (p *parser) newLogicManager(function string, term ast.Expr) *logicManager {
if p.enableVariadicOperatorASTs {
return newVariadicLogicManager(p.exprFactory, function, term)
}
return newBalancingLogicManager(p.exprFactory, function, term)
}
func (p *parser) reportError(ctx any, format string, args ...any) ast.Expr {
var location common.Location
err := p.helper.newExpr(ctx)
switch c := ctx.(type) {
case common.Location:
location = c
case antlr.Token, antlr.ParserRuleContext:
location = p.helper.getLocation(err.ID())
}
// Provide arguments to the report error.
p.errors.reportErrorAtID(err.ID(), location, format, args...)
return err
}
// ANTLR Parse listener implementations
func (p *parser) SyntaxError(recognizer antlr.Recognizer, offendingSymbol any, line, column int, msg string, e antlr.RecognitionException) {
l := p.helper.source.NewLocation(line, column)
// Hack to keep existing error messages consistent with previous versions of CEL when a reserved word
// is used as an identifier. This behavior needs to be overhauled to provide consistent, normalized error
// messages out of ANTLR to prevent future breaking changes related to error message content.
if strings.Contains(msg, "no viable alternative") {
msg = reservedIdentifier.ReplaceAllString(msg, mismatchedReservedIdentifier)
}
// Ensure that no more than 100 syntax errors are reported as this will halt attempts to recover from a
// seriously broken expression.
if p.errorReports < p.errorReportingLimit {
p.errorReports++
p.errors.syntaxError(l, msg)
} else {
tme := &tooManyErrors{errorReportingLimit: p.errorReportingLimit}
p.errors.syntaxError(l, tme.Error())
panic(tme)
}
}
func (p *parser) ReportAmbiguity(recognizer antlr.Parser, dfa *antlr.DFA, startIndex, stopIndex int, exact bool, ambigAlts *antlr.BitSet, configs *antlr.ATNConfigSet) {
// Intentional
}
func (p *parser) ReportAttemptingFullContext(recognizer antlr.Parser, dfa *antlr.DFA, startIndex, stopIndex int, conflictingAlts *antlr.BitSet, configs *antlr.ATNConfigSet) {
// Intentional
}
func (p *parser) ReportContextSensitivity(recognizer antlr.Parser, dfa *antlr.DFA, startIndex, stopIndex, prediction int, configs *antlr.ATNConfigSet) {
// Intentional
}
func (p *parser) globalCallOrMacro(exprID int64, function string, args ...ast.Expr) ast.Expr {
if expr, found := p.expandMacro(exprID, function, nil, args...); found {
return expr
}
return p.helper.newGlobalCall(exprID, function, args...)
}
func (p *parser) receiverCallOrMacro(exprID int64, function string, target ast.Expr, args ...ast.Expr) ast.Expr {
if expr, found := p.expandMacro(exprID, function, target, args...); found {
return expr
}
return p.helper.newReceiverCall(exprID, function, target, args...)
}
func (p *parser) expandMacro(exprID int64, function string, target ast.Expr, args ...ast.Expr) (ast.Expr, bool) {
macro, found := p.macros[makeMacroKey(function, len(args), target != nil)]
if !found {
macro, found = p.macros[makeVarArgMacroKey(function, target != nil)]
if !found {
return nil, false
}
}
eh := exprHelperPool.Get().(*exprHelper)
defer exprHelperPool.Put(eh)
eh.parserHelper = p.helper
eh.id = exprID
expr, err := macro.Expander()(eh, target, args)
// An error indicates that the macro was matched, but the arguments were not well-formed.
if err != nil {
if err.Location != nil {
return p.reportError(err.Location, err.Message), true
}
return p.reportError(p.helper.getLocation(exprID), err.Message), true
}
// A nil value from the macro indicates that the macro implementation decided that
// an expansion should not be performed.
if expr == nil {
return nil, false
}
if p.populateMacroCalls {
p.helper.addMacroCall(expr.ID(), function, target, args...)
}
return expr, true
}
func (p *parser) checkAndIncrementRecursionDepth() {
p.recursionDepth++
if p.recursionDepth > p.maxRecursionDepth {
panic(&recursionError{message: "max recursion depth exceeded"})
}
}
func (p *parser) decrementRecursionDepth() {
p.recursionDepth--
}
// unnest traverses down the left-hand side of the parse graph until it encounters the first compound
// parse node or the first leaf in the parse graph.
func unnest(tree antlr.ParseTree) antlr.ParseTree {
for tree != nil {
switch t := tree.(type) {
case *gen.ExprContext:
// conditionalOr op='?' conditionalOr : expr
if t.GetOp() != nil {
return t
}
// conditionalOr
tree = t.GetE()
case *gen.ConditionalOrContext:
// conditionalAnd (ops=|| conditionalAnd)*
if t.GetOps() != nil && len(t.GetOps()) > 0 {
return t
}
// conditionalAnd
tree = t.GetE()
case *gen.ConditionalAndContext:
// relation (ops=&& relation)*
if t.GetOps() != nil && len(t.GetOps()) > 0 {
return t
}
// relation
tree = t.GetE()
case *gen.RelationContext:
// relation op relation
if t.GetOp() != nil {
return t
}
// calc
tree = t.Calc()
case *gen.CalcContext:
// calc op calc
if t.GetOp() != nil {
return t
}
// unary
tree = t.Unary()
case *gen.MemberExprContext:
// member expands to one of: primary, select, index, or create message
tree = t.Member()
case *gen.PrimaryExprContext:
// primary expands to one of identifier, nested, create list, create struct, literal
tree = t.Primary()
case *gen.NestedContext:
// contains a nested 'expr'
tree = t.GetE()
case *gen.ConstantLiteralContext:
// expands to a primitive literal
tree = t.Literal()
default:
return t
}
}
return tree
}
var (
reservedIdentifier = regexp.MustCompile("no viable alternative at input '.(true|false|null)'")
mismatchedReservedIdentifier = "mismatched input '$1' expecting IDENTIFIER"
)