mirror of
https://github.com/ceph/ceph-csi.git
synced 2025-01-04 11:09:29 +00:00
aa698bc3e1
Kubernetes v1.22 version has been released and this update ceph csi dependencies to use the same version. Signed-off-by: Humble Chirammal <hchiramm@redhat.com>
323 lines
8.5 KiB
Go
323 lines
8.5 KiB
Go
/*
|
|
Copyright 2017 The Kubernetes Authors.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
// This file implements a heap data structure.
|
|
|
|
package cache
|
|
|
|
import (
|
|
"container/heap"
|
|
"fmt"
|
|
"sync"
|
|
)
|
|
|
|
const (
|
|
closedMsg = "heap is closed"
|
|
)
|
|
|
|
// LessFunc is used to compare two objects in the heap.
|
|
type LessFunc func(interface{}, interface{}) bool
|
|
|
|
type heapItem struct {
|
|
obj interface{} // The object which is stored in the heap.
|
|
index int // The index of the object's key in the Heap.queue.
|
|
}
|
|
|
|
type itemKeyValue struct {
|
|
key string
|
|
obj interface{}
|
|
}
|
|
|
|
// heapData is an internal struct that implements the standard heap interface
|
|
// and keeps the data stored in the heap.
|
|
type heapData struct {
|
|
// items is a map from key of the objects to the objects and their index.
|
|
// We depend on the property that items in the map are in the queue and vice versa.
|
|
items map[string]*heapItem
|
|
// queue implements a heap data structure and keeps the order of elements
|
|
// according to the heap invariant. The queue keeps the keys of objects stored
|
|
// in "items".
|
|
queue []string
|
|
|
|
// keyFunc is used to make the key used for queued item insertion and retrieval, and
|
|
// should be deterministic.
|
|
keyFunc KeyFunc
|
|
// lessFunc is used to compare two objects in the heap.
|
|
lessFunc LessFunc
|
|
}
|
|
|
|
var (
|
|
_ = heap.Interface(&heapData{}) // heapData is a standard heap
|
|
)
|
|
|
|
// Less compares two objects and returns true if the first one should go
|
|
// in front of the second one in the heap.
|
|
func (h *heapData) Less(i, j int) bool {
|
|
if i > len(h.queue) || j > len(h.queue) {
|
|
return false
|
|
}
|
|
itemi, ok := h.items[h.queue[i]]
|
|
if !ok {
|
|
return false
|
|
}
|
|
itemj, ok := h.items[h.queue[j]]
|
|
if !ok {
|
|
return false
|
|
}
|
|
return h.lessFunc(itemi.obj, itemj.obj)
|
|
}
|
|
|
|
// Len returns the number of items in the Heap.
|
|
func (h *heapData) Len() int { return len(h.queue) }
|
|
|
|
// Swap implements swapping of two elements in the heap. This is a part of standard
|
|
// heap interface and should never be called directly.
|
|
func (h *heapData) Swap(i, j int) {
|
|
h.queue[i], h.queue[j] = h.queue[j], h.queue[i]
|
|
item := h.items[h.queue[i]]
|
|
item.index = i
|
|
item = h.items[h.queue[j]]
|
|
item.index = j
|
|
}
|
|
|
|
// Push is supposed to be called by heap.Push only.
|
|
func (h *heapData) Push(kv interface{}) {
|
|
keyValue := kv.(*itemKeyValue)
|
|
n := len(h.queue)
|
|
h.items[keyValue.key] = &heapItem{keyValue.obj, n}
|
|
h.queue = append(h.queue, keyValue.key)
|
|
}
|
|
|
|
// Pop is supposed to be called by heap.Pop only.
|
|
func (h *heapData) Pop() interface{} {
|
|
key := h.queue[len(h.queue)-1]
|
|
h.queue = h.queue[0 : len(h.queue)-1]
|
|
item, ok := h.items[key]
|
|
if !ok {
|
|
// This is an error
|
|
return nil
|
|
}
|
|
delete(h.items, key)
|
|
return item.obj
|
|
}
|
|
|
|
// Heap is a thread-safe producer/consumer queue that implements a heap data structure.
|
|
// It can be used to implement priority queues and similar data structures.
|
|
type Heap struct {
|
|
lock sync.RWMutex
|
|
cond sync.Cond
|
|
|
|
// data stores objects and has a queue that keeps their ordering according
|
|
// to the heap invariant.
|
|
data *heapData
|
|
|
|
// closed indicates that the queue is closed.
|
|
// It is mainly used to let Pop() exit its control loop while waiting for an item.
|
|
closed bool
|
|
}
|
|
|
|
// Close the Heap and signals condition variables that may be waiting to pop
|
|
// items from the heap.
|
|
func (h *Heap) Close() {
|
|
h.lock.Lock()
|
|
defer h.lock.Unlock()
|
|
h.closed = true
|
|
h.cond.Broadcast()
|
|
}
|
|
|
|
// Add inserts an item, and puts it in the queue. The item is updated if it
|
|
// already exists.
|
|
func (h *Heap) Add(obj interface{}) error {
|
|
key, err := h.data.keyFunc(obj)
|
|
if err != nil {
|
|
return KeyError{obj, err}
|
|
}
|
|
h.lock.Lock()
|
|
defer h.lock.Unlock()
|
|
if h.closed {
|
|
return fmt.Errorf(closedMsg)
|
|
}
|
|
if _, exists := h.data.items[key]; exists {
|
|
h.data.items[key].obj = obj
|
|
heap.Fix(h.data, h.data.items[key].index)
|
|
} else {
|
|
h.addIfNotPresentLocked(key, obj)
|
|
}
|
|
h.cond.Broadcast()
|
|
return nil
|
|
}
|
|
|
|
// BulkAdd adds all the items in the list to the queue and then signals the condition
|
|
// variable. It is useful when the caller would like to add all of the items
|
|
// to the queue before consumer starts processing them.
|
|
func (h *Heap) BulkAdd(list []interface{}) error {
|
|
h.lock.Lock()
|
|
defer h.lock.Unlock()
|
|
if h.closed {
|
|
return fmt.Errorf(closedMsg)
|
|
}
|
|
for _, obj := range list {
|
|
key, err := h.data.keyFunc(obj)
|
|
if err != nil {
|
|
return KeyError{obj, err}
|
|
}
|
|
if _, exists := h.data.items[key]; exists {
|
|
h.data.items[key].obj = obj
|
|
heap.Fix(h.data, h.data.items[key].index)
|
|
} else {
|
|
h.addIfNotPresentLocked(key, obj)
|
|
}
|
|
}
|
|
h.cond.Broadcast()
|
|
return nil
|
|
}
|
|
|
|
// AddIfNotPresent inserts an item, and puts it in the queue. If an item with
|
|
// the key is present in the map, no changes is made to the item.
|
|
//
|
|
// This is useful in a single producer/consumer scenario so that the consumer can
|
|
// safely retry items without contending with the producer and potentially enqueueing
|
|
// stale items.
|
|
func (h *Heap) AddIfNotPresent(obj interface{}) error {
|
|
id, err := h.data.keyFunc(obj)
|
|
if err != nil {
|
|
return KeyError{obj, err}
|
|
}
|
|
h.lock.Lock()
|
|
defer h.lock.Unlock()
|
|
if h.closed {
|
|
return fmt.Errorf(closedMsg)
|
|
}
|
|
h.addIfNotPresentLocked(id, obj)
|
|
h.cond.Broadcast()
|
|
return nil
|
|
}
|
|
|
|
// addIfNotPresentLocked assumes the lock is already held and adds the provided
|
|
// item to the queue if it does not already exist.
|
|
func (h *Heap) addIfNotPresentLocked(key string, obj interface{}) {
|
|
if _, exists := h.data.items[key]; exists {
|
|
return
|
|
}
|
|
heap.Push(h.data, &itemKeyValue{key, obj})
|
|
}
|
|
|
|
// Update is the same as Add in this implementation. When the item does not
|
|
// exist, it is added.
|
|
func (h *Heap) Update(obj interface{}) error {
|
|
return h.Add(obj)
|
|
}
|
|
|
|
// Delete removes an item.
|
|
func (h *Heap) Delete(obj interface{}) error {
|
|
key, err := h.data.keyFunc(obj)
|
|
if err != nil {
|
|
return KeyError{obj, err}
|
|
}
|
|
h.lock.Lock()
|
|
defer h.lock.Unlock()
|
|
if item, ok := h.data.items[key]; ok {
|
|
heap.Remove(h.data, item.index)
|
|
return nil
|
|
}
|
|
return fmt.Errorf("object not found")
|
|
}
|
|
|
|
// Pop waits until an item is ready. If multiple items are
|
|
// ready, they are returned in the order given by Heap.data.lessFunc.
|
|
func (h *Heap) Pop() (interface{}, error) {
|
|
h.lock.Lock()
|
|
defer h.lock.Unlock()
|
|
for len(h.data.queue) == 0 {
|
|
// When the queue is empty, invocation of Pop() is blocked until new item is enqueued.
|
|
// When Close() is called, the h.closed is set and the condition is broadcast,
|
|
// which causes this loop to continue and return from the Pop().
|
|
if h.closed {
|
|
return nil, fmt.Errorf("heap is closed")
|
|
}
|
|
h.cond.Wait()
|
|
}
|
|
obj := heap.Pop(h.data)
|
|
if obj == nil {
|
|
return nil, fmt.Errorf("object was removed from heap data")
|
|
}
|
|
|
|
return obj, nil
|
|
}
|
|
|
|
// List returns a list of all the items.
|
|
func (h *Heap) List() []interface{} {
|
|
h.lock.RLock()
|
|
defer h.lock.RUnlock()
|
|
list := make([]interface{}, 0, len(h.data.items))
|
|
for _, item := range h.data.items {
|
|
list = append(list, item.obj)
|
|
}
|
|
return list
|
|
}
|
|
|
|
// ListKeys returns a list of all the keys of the objects currently in the Heap.
|
|
func (h *Heap) ListKeys() []string {
|
|
h.lock.RLock()
|
|
defer h.lock.RUnlock()
|
|
list := make([]string, 0, len(h.data.items))
|
|
for key := range h.data.items {
|
|
list = append(list, key)
|
|
}
|
|
return list
|
|
}
|
|
|
|
// Get returns the requested item, or sets exists=false.
|
|
func (h *Heap) Get(obj interface{}) (interface{}, bool, error) {
|
|
key, err := h.data.keyFunc(obj)
|
|
if err != nil {
|
|
return nil, false, KeyError{obj, err}
|
|
}
|
|
return h.GetByKey(key)
|
|
}
|
|
|
|
// GetByKey returns the requested item, or sets exists=false.
|
|
func (h *Heap) GetByKey(key string) (interface{}, bool, error) {
|
|
h.lock.RLock()
|
|
defer h.lock.RUnlock()
|
|
item, exists := h.data.items[key]
|
|
if !exists {
|
|
return nil, false, nil
|
|
}
|
|
return item.obj, true, nil
|
|
}
|
|
|
|
// IsClosed returns true if the queue is closed.
|
|
func (h *Heap) IsClosed() bool {
|
|
h.lock.RLock()
|
|
defer h.lock.RUnlock()
|
|
return h.closed
|
|
}
|
|
|
|
// NewHeap returns a Heap which can be used to queue up items to process.
|
|
func NewHeap(keyFn KeyFunc, lessFn LessFunc) *Heap {
|
|
h := &Heap{
|
|
data: &heapData{
|
|
items: map[string]*heapItem{},
|
|
queue: []string{},
|
|
keyFunc: keyFn,
|
|
lessFunc: lessFn,
|
|
},
|
|
}
|
|
h.cond.L = &h.lock
|
|
return h
|
|
}
|