ceph-csi/vendor/github.com/google/cel-go/cel/inlining.go
Madhu Rajanna 5a66991bb3 rebase: update kubernetes to latest
updating the kubernetes release to the
latest in main go.mod

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
2024-08-20 08:17:01 +00:00

229 lines
8.1 KiB
Go

// Copyright 2023 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package cel
import (
"github.com/google/cel-go/common/ast"
"github.com/google/cel-go/common/containers"
"github.com/google/cel-go/common/operators"
"github.com/google/cel-go/common/overloads"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/traits"
)
// InlineVariable holds a variable name to be matched and an AST representing
// the expression graph which should be used to replace it.
type InlineVariable struct {
name string
alias string
def *ast.AST
}
// Name returns the qualified variable or field selection to replace.
func (v *InlineVariable) Name() string {
return v.name
}
// Alias returns the alias to use when performing cel.bind() calls during inlining.
func (v *InlineVariable) Alias() string {
return v.alias
}
// Expr returns the inlined expression value.
func (v *InlineVariable) Expr() ast.Expr {
return v.def.Expr()
}
// Type indicates the inlined expression type.
func (v *InlineVariable) Type() *Type {
return v.def.GetType(v.def.Expr().ID())
}
// NewInlineVariable declares a variable name to be replaced by a checked expression.
func NewInlineVariable(name string, definition *Ast) *InlineVariable {
return NewInlineVariableWithAlias(name, name, definition)
}
// NewInlineVariableWithAlias declares a variable name to be replaced by a checked expression.
// If the variable occurs more than once, the provided alias will be used to replace the expressions
// where the variable name occurs.
func NewInlineVariableWithAlias(name, alias string, definition *Ast) *InlineVariable {
return &InlineVariable{name: name, alias: alias, def: definition.impl}
}
// NewInliningOptimizer creates and optimizer which replaces variables with expression definitions.
//
// If a variable occurs one time, the variable is replaced by the inline definition. If the
// variable occurs more than once, the variable occurences are replaced by a cel.bind() call.
func NewInliningOptimizer(inlineVars ...*InlineVariable) ASTOptimizer {
return &inliningOptimizer{variables: inlineVars}
}
type inliningOptimizer struct {
variables []*InlineVariable
}
func (opt *inliningOptimizer) Optimize(ctx *OptimizerContext, a *ast.AST) *ast.AST {
root := ast.NavigateAST(a)
for _, inlineVar := range opt.variables {
matches := ast.MatchDescendants(root, opt.matchVariable(inlineVar.Name()))
// Skip cases where the variable isn't in the expression graph
if len(matches) == 0 {
continue
}
// For a single match, do a direct replacement of the expression sub-graph.
if len(matches) == 1 || !isBindable(matches, inlineVar.Expr(), inlineVar.Type()) {
for _, match := range matches {
// Copy the inlined AST expr and source info.
copyExpr := ctx.CopyASTAndMetadata(inlineVar.def)
opt.inlineExpr(ctx, match, copyExpr, inlineVar.Type())
}
continue
}
// For multiple matches, find the least common ancestor (lca) and insert the
// variable as a cel.bind() macro.
var lca ast.NavigableExpr = root
lcaAncestorCount := 0
ancestors := map[int64]int{}
for _, match := range matches {
// Update the identifier matches with the provided alias.
parent, found := match, true
for found {
ancestorCount, hasAncestor := ancestors[parent.ID()]
if !hasAncestor {
ancestors[parent.ID()] = 1
parent, found = parent.Parent()
continue
}
if lcaAncestorCount < ancestorCount || (lcaAncestorCount == ancestorCount && lca.Depth() < parent.Depth()) {
lca = parent
lcaAncestorCount = ancestorCount
}
ancestors[parent.ID()] = ancestorCount + 1
parent, found = parent.Parent()
}
aliasExpr := ctx.NewIdent(inlineVar.Alias())
opt.inlineExpr(ctx, match, aliasExpr, inlineVar.Type())
}
// Copy the inlined AST expr and source info.
copyExpr := ctx.CopyASTAndMetadata(inlineVar.def)
// Update the least common ancestor by inserting a cel.bind() call to the alias.
inlined, bindMacro := ctx.NewBindMacro(lca.ID(), inlineVar.Alias(), copyExpr, lca)
opt.inlineExpr(ctx, lca, inlined, inlineVar.Type())
ctx.SetMacroCall(lca.ID(), bindMacro)
}
return a
}
// inlineExpr replaces the current expression with the inlined one, unless the location of the inlining
// happens within a presence test, e.g. has(a.b.c) -> inline alpha for a.b.c in which case an attempt is
// made to determine whether the inlined value can be presence or existence tested.
func (opt *inliningOptimizer) inlineExpr(ctx *OptimizerContext, prev ast.NavigableExpr, inlined ast.Expr, inlinedType *Type) {
switch prev.Kind() {
case ast.SelectKind:
sel := prev.AsSelect()
if !sel.IsTestOnly() {
ctx.UpdateExpr(prev, inlined)
return
}
opt.rewritePresenceExpr(ctx, prev, inlined, inlinedType)
default:
ctx.UpdateExpr(prev, inlined)
}
}
// rewritePresenceExpr converts the inlined expression, when it occurs within a has() macro, to type-safe
// expression appropriate for the inlined type, if possible.
//
// If the rewrite is not possible an error is reported at the inline expression site.
func (opt *inliningOptimizer) rewritePresenceExpr(ctx *OptimizerContext, prev, inlined ast.Expr, inlinedType *Type) {
// If the input inlined expression is not a select expression it won't work with the has()
// macro. Attempt to rewrite the presence test in terms of the typed input, otherwise error.
if inlined.Kind() == ast.SelectKind {
presenceTest, hasMacro := ctx.NewHasMacro(prev.ID(), inlined)
ctx.UpdateExpr(prev, presenceTest)
ctx.SetMacroCall(prev.ID(), hasMacro)
return
}
ctx.ClearMacroCall(prev.ID())
if inlinedType.IsAssignableType(NullType) {
ctx.UpdateExpr(prev,
ctx.NewCall(operators.NotEquals,
inlined,
ctx.NewLiteral(types.NullValue),
))
return
}
if inlinedType.HasTrait(traits.SizerType) {
ctx.UpdateExpr(prev,
ctx.NewCall(operators.NotEquals,
ctx.NewMemberCall(overloads.Size, inlined),
ctx.NewLiteral(types.IntZero),
))
return
}
ctx.ReportErrorAtID(prev.ID(), "unable to inline expression type %v into presence test", inlinedType)
}
// isBindable indicates whether the inlined type can be used within a cel.bind() if the expression
// being replaced occurs within a presence test. Value types with a size() method or field selection
// support can be bound.
//
// In future iterations, support may also be added for indexer types which can be rewritten as an `in`
// expression; however, this would imply a rewrite of the inlined expression that may not be necessary
// in most cases.
func isBindable(matches []ast.NavigableExpr, inlined ast.Expr, inlinedType *Type) bool {
if inlinedType.IsAssignableType(NullType) ||
inlinedType.HasTrait(traits.SizerType) {
return true
}
for _, m := range matches {
if m.Kind() != ast.SelectKind {
continue
}
sel := m.AsSelect()
if sel.IsTestOnly() {
return false
}
}
return true
}
// matchVariable matches simple identifiers, select expressions, and presence test expressions
// which match the (potentially) qualified variable name provided as input.
//
// Note, this function does not support inlining against select expressions which includes optional
// field selection. This may be a future refinement.
func (opt *inliningOptimizer) matchVariable(varName string) ast.ExprMatcher {
return func(e ast.NavigableExpr) bool {
if e.Kind() == ast.IdentKind && e.AsIdent() == varName {
return true
}
if e.Kind() == ast.SelectKind {
sel := e.AsSelect()
// While the `ToQualifiedName` call could take the select directly, this
// would skip presence tests from possible matches, which we would like
// to include.
qualName, found := containers.ToQualifiedName(sel.Operand())
return found && qualName+"."+sel.FieldName() == varName
}
return false
}
}