ceph-csi/vendor/github.com/google/cel-go/ext/math.go
Madhu Rajanna 5a66991bb3 rebase: update kubernetes to latest
updating the kubernetes release to the
latest in main go.mod

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
2024-08-20 08:17:01 +00:00

373 lines
12 KiB
Go

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ext
import (
"fmt"
"strings"
"github.com/google/cel-go/cel"
"github.com/google/cel-go/common/ast"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
)
// Math returns a cel.EnvOption to configure namespaced math helper macros and
// functions.
//
// Note, all macros use the 'math' namespace; however, at the time of macro
// expansion the namespace looks just like any other identifier. If you are
// currently using a variable named 'math', the macro will likely work just as
// intended; however, there is some chance for collision.
//
// # Math.Greatest
//
// Returns the greatest valued number present in the arguments to the macro.
//
// Greatest is a variable argument count macro which must take at least one
// argument. Simple numeric and list literals are supported as valid argument
// types; however, other literals will be flagged as errors during macro
// expansion. If the argument expression does not resolve to a numeric or
// list(numeric) type during type-checking, or during runtime then an error
// will be produced. If a list argument is empty, this too will produce an
// error.
//
// math.greatest(<arg>, ...) -> <double|int|uint>
//
// Examples:
//
// math.greatest(1) // 1
// math.greatest(1u, 2u) // 2u
// math.greatest(-42.0, -21.5, -100.0) // -21.5
// math.greatest([-42.0, -21.5, -100.0]) // -21.5
// math.greatest(numbers) // numbers must be list(numeric)
//
// math.greatest() // parse error
// math.greatest('string') // parse error
// math.greatest(a, b) // check-time error if a or b is non-numeric
// math.greatest(dyn('string')) // runtime error
//
// # Math.Least
//
// Returns the least valued number present in the arguments to the macro.
//
// Least is a variable argument count macro which must take at least one
// argument. Simple numeric and list literals are supported as valid argument
// types; however, other literals will be flagged as errors during macro
// expansion. If the argument expression does not resolve to a numeric or
// list(numeric) type during type-checking, or during runtime then an error
// will be produced. If a list argument is empty, this too will produce an
// error.
//
// math.least(<arg>, ...) -> <double|int|uint>
//
// Examples:
//
// math.least(1) // 1
// math.least(1u, 2u) // 1u
// math.least(-42.0, -21.5, -100.0) // -100.0
// math.least([-42.0, -21.5, -100.0]) // -100.0
// math.least(numbers) // numbers must be list(numeric)
//
// math.least() // parse error
// math.least('string') // parse error
// math.least(a, b) // check-time error if a or b is non-numeric
// math.least(dyn('string')) // runtime error
func Math() cel.EnvOption {
return cel.Lib(mathLib{})
}
const (
mathNamespace = "math"
leastMacro = "least"
greatestMacro = "greatest"
minFunc = "math.@min"
maxFunc = "math.@max"
)
type mathLib struct{}
// LibraryName implements the SingletonLibrary interface method.
func (mathLib) LibraryName() string {
return "cel.lib.ext.math"
}
// CompileOptions implements the Library interface method.
func (mathLib) CompileOptions() []cel.EnvOption {
return []cel.EnvOption{
cel.Macros(
// math.least(num, ...)
cel.ReceiverVarArgMacro(leastMacro, mathLeast),
// math.greatest(num, ...)
cel.ReceiverVarArgMacro(greatestMacro, mathGreatest),
),
cel.Function(minFunc,
cel.Overload("math_@min_double", []*cel.Type{cel.DoubleType}, cel.DoubleType,
cel.UnaryBinding(identity)),
cel.Overload("math_@min_int", []*cel.Type{cel.IntType}, cel.IntType,
cel.UnaryBinding(identity)),
cel.Overload("math_@min_uint", []*cel.Type{cel.UintType}, cel.UintType,
cel.UnaryBinding(identity)),
cel.Overload("math_@min_double_double", []*cel.Type{cel.DoubleType, cel.DoubleType}, cel.DoubleType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_int_int", []*cel.Type{cel.IntType, cel.IntType}, cel.IntType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_uint_uint", []*cel.Type{cel.UintType, cel.UintType}, cel.UintType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_int_uint", []*cel.Type{cel.IntType, cel.UintType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_int_double", []*cel.Type{cel.IntType, cel.DoubleType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_double_int", []*cel.Type{cel.DoubleType, cel.IntType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_double_uint", []*cel.Type{cel.DoubleType, cel.UintType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_uint_int", []*cel.Type{cel.UintType, cel.IntType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_uint_double", []*cel.Type{cel.UintType, cel.DoubleType}, cel.DynType,
cel.BinaryBinding(minPair)),
cel.Overload("math_@min_list_double", []*cel.Type{cel.ListType(cel.DoubleType)}, cel.DoubleType,
cel.UnaryBinding(minList)),
cel.Overload("math_@min_list_int", []*cel.Type{cel.ListType(cel.IntType)}, cel.IntType,
cel.UnaryBinding(minList)),
cel.Overload("math_@min_list_uint", []*cel.Type{cel.ListType(cel.UintType)}, cel.UintType,
cel.UnaryBinding(minList)),
),
cel.Function(maxFunc,
cel.Overload("math_@max_double", []*cel.Type{cel.DoubleType}, cel.DoubleType,
cel.UnaryBinding(identity)),
cel.Overload("math_@max_int", []*cel.Type{cel.IntType}, cel.IntType,
cel.UnaryBinding(identity)),
cel.Overload("math_@max_uint", []*cel.Type{cel.UintType}, cel.UintType,
cel.UnaryBinding(identity)),
cel.Overload("math_@max_double_double", []*cel.Type{cel.DoubleType, cel.DoubleType}, cel.DoubleType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_int_int", []*cel.Type{cel.IntType, cel.IntType}, cel.IntType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_uint_uint", []*cel.Type{cel.UintType, cel.UintType}, cel.UintType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_int_uint", []*cel.Type{cel.IntType, cel.UintType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_int_double", []*cel.Type{cel.IntType, cel.DoubleType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_double_int", []*cel.Type{cel.DoubleType, cel.IntType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_double_uint", []*cel.Type{cel.DoubleType, cel.UintType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_uint_int", []*cel.Type{cel.UintType, cel.IntType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_uint_double", []*cel.Type{cel.UintType, cel.DoubleType}, cel.DynType,
cel.BinaryBinding(maxPair)),
cel.Overload("math_@max_list_double", []*cel.Type{cel.ListType(cel.DoubleType)}, cel.DoubleType,
cel.UnaryBinding(maxList)),
cel.Overload("math_@max_list_int", []*cel.Type{cel.ListType(cel.IntType)}, cel.IntType,
cel.UnaryBinding(maxList)),
cel.Overload("math_@max_list_uint", []*cel.Type{cel.ListType(cel.UintType)}, cel.UintType,
cel.UnaryBinding(maxList)),
),
}
}
// ProgramOptions implements the Library interface method.
func (mathLib) ProgramOptions() []cel.ProgramOption {
return []cel.ProgramOption{}
}
func mathLeast(meh cel.MacroExprFactory, target ast.Expr, args []ast.Expr) (ast.Expr, *cel.Error) {
if !macroTargetMatchesNamespace(mathNamespace, target) {
return nil, nil
}
switch len(args) {
case 0:
return nil, meh.NewError(target.ID(), "math.least() requires at least one argument")
case 1:
if isListLiteralWithValidArgs(args[0]) || isValidArgType(args[0]) {
return meh.NewCall(minFunc, args[0]), nil
}
return nil, meh.NewError(args[0].ID(), "math.least() invalid single argument value")
case 2:
err := checkInvalidArgs(meh, "math.least()", args)
if err != nil {
return nil, err
}
return meh.NewCall(minFunc, args...), nil
default:
err := checkInvalidArgs(meh, "math.least()", args)
if err != nil {
return nil, err
}
return meh.NewCall(minFunc, meh.NewList(args...)), nil
}
}
func mathGreatest(mef cel.MacroExprFactory, target ast.Expr, args []ast.Expr) (ast.Expr, *cel.Error) {
if !macroTargetMatchesNamespace(mathNamespace, target) {
return nil, nil
}
switch len(args) {
case 0:
return nil, mef.NewError(target.ID(), "math.greatest() requires at least one argument")
case 1:
if isListLiteralWithValidArgs(args[0]) || isValidArgType(args[0]) {
return mef.NewCall(maxFunc, args[0]), nil
}
return nil, mef.NewError(args[0].ID(), "math.greatest() invalid single argument value")
case 2:
err := checkInvalidArgs(mef, "math.greatest()", args)
if err != nil {
return nil, err
}
return mef.NewCall(maxFunc, args...), nil
default:
err := checkInvalidArgs(mef, "math.greatest()", args)
if err != nil {
return nil, err
}
return mef.NewCall(maxFunc, mef.NewList(args...)), nil
}
}
func identity(val ref.Val) ref.Val {
return val
}
func minPair(first, second ref.Val) ref.Val {
cmp, ok := first.(traits.Comparer)
if !ok {
return types.MaybeNoSuchOverloadErr(first)
}
out := cmp.Compare(second)
if types.IsUnknownOrError(out) {
return maybeSuffixError(out, "math.@min")
}
if out == types.IntOne {
return second
}
return first
}
func minList(numList ref.Val) ref.Val {
l := numList.(traits.Lister)
size := l.Size().(types.Int)
if size == types.IntZero {
return types.NewErr("math.@min(list) argument must not be empty")
}
min := l.Get(types.IntZero)
for i := types.IntOne; i < size; i++ {
min = minPair(min, l.Get(i))
}
switch min.Type() {
case types.IntType, types.DoubleType, types.UintType, types.UnknownType:
return min
default:
return types.NewErr("no such overload: math.@min")
}
}
func maxPair(first, second ref.Val) ref.Val {
cmp, ok := first.(traits.Comparer)
if !ok {
return types.MaybeNoSuchOverloadErr(first)
}
out := cmp.Compare(second)
if types.IsUnknownOrError(out) {
return maybeSuffixError(out, "math.@max")
}
if out == types.IntNegOne {
return second
}
return first
}
func maxList(numList ref.Val) ref.Val {
l := numList.(traits.Lister)
size := l.Size().(types.Int)
if size == types.IntZero {
return types.NewErr("math.@max(list) argument must not be empty")
}
max := l.Get(types.IntZero)
for i := types.IntOne; i < size; i++ {
max = maxPair(max, l.Get(i))
}
switch max.Type() {
case types.IntType, types.DoubleType, types.UintType, types.UnknownType:
return max
default:
return types.NewErr("no such overload: math.@max")
}
}
func checkInvalidArgs(meh cel.MacroExprFactory, funcName string, args []ast.Expr) *cel.Error {
for _, arg := range args {
err := checkInvalidArgLiteral(funcName, arg)
if err != nil {
return meh.NewError(arg.ID(), err.Error())
}
}
return nil
}
func checkInvalidArgLiteral(funcName string, arg ast.Expr) error {
if !isValidArgType(arg) {
return fmt.Errorf("%s simple literal arguments must be numeric", funcName)
}
return nil
}
func isValidArgType(arg ast.Expr) bool {
switch arg.Kind() {
case ast.LiteralKind:
c := ref.Val(arg.AsLiteral())
switch c.(type) {
case types.Double, types.Int, types.Uint:
return true
default:
return false
}
case ast.ListKind, ast.MapKind, ast.StructKind:
return false
default:
return true
}
}
func isListLiteralWithValidArgs(arg ast.Expr) bool {
switch arg.Kind() {
case ast.ListKind:
list := arg.AsList()
if list.Size() == 0 {
return false
}
for _, e := range list.Elements() {
if !isValidArgType(e) {
return false
}
}
return true
}
return false
}
func maybeSuffixError(val ref.Val, suffix string) ref.Val {
if types.IsError(val) {
msg := val.(*types.Err).String()
if !strings.Contains(msg, suffix) {
return types.NewErr("%s: %s", msg, suffix)
}
}
return val
}